
User Guide

Build 10.7.0.0202512081401_SNAPSHOT

ii

Table of Contents
1. Preface .. 1

1.1. Abstract .. 1
1.2. Intended Audience .. 1
1.3. License Information .. 1
1.4. Compatible Operating Systems .. 1

1.4.1. Support of 32 Bit Operating Systems ... 2
1.5. Updates/Security Information .. 2
1.6. Known Issues ... 2

1.6.1. KDE on Red Hat Enterprise Linux 7 .. 2
1.6.2. KDE with Oxygen .. 2
1.6.3. Jython scripts are executed sequentially .. 2
1.6.4. 32-bit Java is not supported .. 3

2. Setup .. 4
2.1. Installation on Windows ... 4

2.1.1. Prerequisites .. 4
2.1.2. Obtaining the Signing Key ... 4
2.1.3. Installation .. 5
2.1.4. Starting RCE as a GUI Client ... 5
2.1.5. Starting a Non-GUI ("Headless") Instance ... 5
2.1.6. Installation as a Service on a Windows Server ... 6

2.2. Configuration and Profiles .. 6
2.2.1. Choosing the Profile Directory .. 6
2.2.2. Contents of the Profile Directory ... 8
2.2.3. Configuration Parameters ... 8
2.2.4. Configuration UI .. 15

2.2.4.1. Remote Access: SSH account configuration 16
2.2.4.2. Mail: SMTP server configuration .. 16

2.2.5. Importing authorization data without GUI access 17
2.2.5.1. Importing or deleting RCE authorization group keys 17
2.2.5.2. Importing SSH Uplink passwords or keyfile passphrases 18
2.2.5.3. Importing SSH Remote Access passwords or keyfile passphrases 18

3. Usage .. 19
3.1. Command Line Parameters ... 19
3.2. Graphical User Interface ... 21
3.3. Workflows ... 23

3.3.1. Rationale ... 24
3.3.2. Getting Started ... 24
3.3.3. Workflow Components .. 24
3.3.4. Coupling Workflow Components ... 25
3.3.5. Execution Scheduling of Workflow Components 26
3.3.6. (Nested) Loops ... 27
3.3.7. Fault-tolerant Loops .. 29
3.3.8. Manual Tool Result Verification .. 29

3.4. User-Defined Components .. 30
3.4.1. Integrating External Tools as Components ... 30

3.4.1.1. Directory Structure for Integrated Tools .. 31
3.4.1.2. Copying of Integrated Tools ... 32
3.4.1.3. Integration of CPACS Tools ... 33
3.4.1.4. Known Issues .. 37

3.4.2. Integrating Workflows as Components (Experimental) 37
3.4.2.1. Integrating a Workflow via command console 38
3.4.2.2. Workflow Integration Editor ... 40
3.4.2.3. Technical Details of Executing an Integrated Workflow 41
3.4.2.4. Limitations, Caveats, and FAQ ... 42

3.5. Connecting RCE instances .. 43

User Guide

iii

3.5.1. RCE Network Connections ... 44
3.5.2. Uplink Connections ... 44

3.5.2.1. Configuring an RCE instance as an Uplink relay 45
3.5.2.2. Configuring an RCE instance as an Uplink client or gateway (in
GUI mode) ... 45
3.5.2.3. Configuring an Uplink Gateway in non-GUI mode 45
3.5.2.4. Tool publishing .. 46
3.5.2.5. Possibly surprising behavior (or non-behavior) 46
3.5.2.6. Known issues/limitations of the current release 46

3.5.3. Example of a Cross-Organization Network .. 46
3.5.4. SSH Remote Access Connections .. 47

3.5.4.1. Configuring an RCE instance as an SSH server 48
3.5.4.2. Configuring an RCE instance as an SSH client 48

3.6. Tool publishing and authorization .. 48
3.6.1. Managing authorization groups .. 49
3.6.2. Publishing tools on the command console .. 49

3.7. RCE’s Command Console .. 50
3.7.1. Commands .. 50
3.7.2. Parameters ... 57

3.7.2.1. Configuration Placeholder Value Files .. 57
3.8. The Event Log ... 58

3.8.1. Design Principles .. 58
3.8.2. Event Structure and File Representation .. 58
3.8.3. Events Types and Attributes ... 59

A. Script API Reference ... 72

iv

List of Figures
2.1. Profile Selection UI ... 7
2.2. Configuration tool for SSH account and SMTP server configuration 16
3.1. Workbench with different views and the workflow editor opened 21
3.2. Connection Editor ... 22
3.3. Network View .. 22
3.4. Workflow Data Browser ... 23
3.5. Workflow Console .. 23
3.6. Run process of an user-integrated CPACS Tool .. 35
3.7. Workflow for determining the optimal input for the function f_c(x). 37
3.8. Workflow from the above figure prepared for integration as a component. 39
3.9. Workflow Integration Editor ... 41
3.10. Mapping Page ... 41
3.11. Example RCE network ... 47

v

List of Tables
2.1. "general" ... 8
2.2. "backgroundMonitoring" .. 9
2.3. "network" .. 9
2.4. "componentSettings" .. 11
2.5. "thirdPartyIntegration" .. 11
2.6. "sshServer" .. 11
2.7. Possible roles for SSH accounts ... 12
2.8. "uplink" ... 13
2.9. "sshRemoteAccess" ... 14
2.10. "smtpServer" ... 15
3.1. Command line arguments for RCE ... 19
3.2. Data Type Conversion Table ... 26
3.3. Inputs of Optimizer ... 27
3.4. Outputs of Optimizer ... 28
3.5. Inputs of Design of Experiments .. 28
3.6. Outputs of Design of Experiments .. 28
3.7. Inputs of Parametric Study .. 28
3.8. Outputs of Parametric Study ... 28
3.9. Inputs of Converger ... 28
3.10. Outputs of Converger ... 29
3.11. Connection types - feature matrix ... 43

vi

List of Examples
2.1. Choosing the Profile Directory .. 7

1

1. Preface
This chapter gives an introduction to RCE.

1.1. Abstract
RCE (Remote Component Environment) is an open source software that helps engineers, scientists
and others to create, manage and execute complex calculation and simulation workflows. A workflow
in RCE consists of components with predefined inputs and outputs connected to each other. A
component can be a simulation tool, a tool for data access, or a user-defined script. Connections define
which data flows from one component to another. There are predefined components with common
functionalities, like an optimizer or a cluster component. Additionally, users can integrate their own
tools. RCE instances can be connected with each other. Components can be executed locally or on
remote instances of RCE (if the component is configured to allow this). Using these building blocks,
use cases for complex distributed applications can be solved with RCE.

1.2. Intended Audience
The intended audience of this document consists of engineers, scientists, and everybody else interested
in developing automated workflows with RCE.

1.3. License Information
RCE is published under the Eclipse Public Licence (EPL) 1.0. It is based on Eclipse RCP 4.8.0
(Photon), which is also published under the Eclipse Public Licence (EPL) 1.0. RCE also makes use
of various libraries which may not be covered by the EPL; for detailed information, see the file
"THIRD_PARTY" in the root folder of an RCE installation. (To review this file without installing
RCE, open the RCE release .zip file.)

For downloads and further information, please visit https://rcenvironment.de/.

1.4. Compatible Operating Systems
RCE releases are provided for Windows and Linux. It is regularly tested on

• Windows 10

• Windows Server 2019

• CentOS 8

• Debian 11

• Ubuntu 20.04 LTS

https://rcenvironment.de/

Preface

2

and should also run on Mint 10.04 and SUSE Linux Enterprise Server 15 SP2.

1.4.1. Support of 32 Bit Operating Systems
Starting with release 8.0.0, RCE is only shipped for 64 bit systems. If you still require 32 bit packages,
you can continue to use previous RCE releases, but there will be no standard feature or bugfix updates
for them.

1.5. Updates/Security Information
As third-party software (e.g. libraries) included in RCE is constantly updated, it is generally
recommended to always upgrading RCE to the latest available release. However, not every
update might be strictly necessary. To allow RCE users and administrators to make informed
decisions, the page "Update/Security Information for RCE Releases" [https://rcenvironment.de/pages/
updatessecurity.html] provides an overview of the status of all public RCE releases. In particular, this
includes information about how important it is to update from a certain RCE version.

1.6. Known Issues

1.6.1. KDE on Red Hat Enterprise Linux 7
On Red Hat Enterprise Linux 7 with KDE 4, RCE (like any other Eclipse-based application) can cause
a segmentation fault at startup. If you encounter such an issue, you can try choosing a different GTK2
theme:

1. Open the System Settings application (systemsettings).

2. Go to Application Appearance

3. Open GTK page

4. Switch the GTK2 theme to "Raleigh" or "Adwaita" and click on Apply

1.6.2. KDE with Oxygen
On Unix Systems using KDE as desktop environment and Oxygen as theme it can happen that RCE
crashes when certain GUI elements are shown. It is a known issue in the theme Oxygen and happens
on other Eclipse-based applications as well. If you encounter such an issue, please choose a different
theme like "Raleigh" or "Adwaita".

1.6.3. Jython scripts are executed sequentially
The Script component can use Jython for the evaluation of scripts and the pre- and postprocessing of
integrated tools always uses Jython. Due to a known bug in the Jython implementation it is not possible
to execute several Jython instances in parallel. Therefore, the execution will be done sequentially. If
several Script components should be executed in parallel, Python should be used instead.

https://rcenvironment.de/pages/updatessecurity.html
https://rcenvironment.de/pages/updatessecurity.html
https://rcenvironment.de/pages/updatessecurity.html

Preface

3

1.6.4. 32-bit Java is not supported
Running RCE with a 32-bit Java Runtime Environment doesn't work. On some operating systems an
error dialog will be displayed in this case, on some other systems nothing will happen at all. Therefore,
always make sure a 64-bit Java Runtime Environment is used to run RCE.

4

2. Setup
This section describes the installation and configuration of RCE.

2.1. Installation on Windows

2.1.1. Prerequisites
To run RCE on a system, the only prerequisite is an installed Java Runtime Environment (JRE), version
11 or above. If you do not already have one on your machine, you can download it from e.g.

https://adoptium.net/temurin/releases

and install it. Starting with RCE 8.x we only publish 64 bit packages of RCE. Therefore, please make
sure to install the 64 bit version of the JRE.

Note

Some pre-installed components of RCE have additional dependencies. Please refer to Section 2.3 (Workflow
Components) for more details.

2.1.2. Obtaining the Signing Key
Any software can be tampered with by a malicious attacker. For RCE, the consequences of such
tampering may be worse than with other software, since its intended behavior already includes
executing arbitrary processes, opening outgoing network connections, and listening for incoming ones.
One common safeguard against such tampering is software signing. If the developers sign a software
artifact, e.g., a zip-archive or an executable file, the user can verify the signature. This verification
confirms that the artifact downloaded onto their machine is identical to the artifact prepared by the
software developers and has not been tampered with.

In order to sign a software artifact, the developers combine the artifact and a so-called signing key
to form a signature file. The user can then verify the signature using the artifact, the signature file,
and a part of the signing key that can only be used for verification, but not for signing. A technical
introduction to the minutiae of software signing is out of the scope of this user guide and we refer to
the literature for more information on this topic.

While verifying the downloaded artifact is optional, we strongly recommend doing so.

In order to verify the signature of a software, you require

• the artifact that you want to verify (in this case a .zip-file)

• a signature file provided by the signer (in this case provided by us)

• the verification part of the signing key.

You can find the former two items at https://rcenvironment.de under the menu item Download.
The signature file is called SHA256SUM.asc and is available in the same directory as the artifacts.
The latter item, i.e., the signing key, is not available via https://rcenvironment.de or linked to in this
user guide on purpose: Recall that the purpose of software signing is to protect against compromised
communication channels between developers and users. Thus, if the artifact, the signatures, and the

https://rcenvironment.de
https://rcenvironment.de

Setup

5

signing key were available at the same location, an attacker that takes control over that location could
easily forge all three components.

One common way to distribute such keyfiles is via so-called public keyservers. We had previously
published the signing key for RCE at the SKS-keyservers, which are no longer available. Nevertheless,
we have published the keyfile via https://github.com in the repository called rce-signing owned
by the organization rcenvironment. For now, this is the key supplier to use until we determine a
new public key server. Please verify the integrity of the obtained keyfile by checking its fingerprint
against the one published by us via a trusted channel. We omit giving direct links as well as the key's
fingerprint here on purpose. This slightly decreases the chance of attackers directing you toward a
forged key.

The precise steps required for signature verification differ from system to system. Commonly, key
retrieval and verification is handled by gpg4win (available at https://www.gpg4win.org). Please refer
to its documentation in order to verify your downloaded software artifact.

2.1.3. Installation
On Windows, we provide a single .zip-file to set up both client and server installations. This file is
available at

https://download.rcenvironment.de/rce/10.x/products/standard/releases/latest/zip/

Installing RCE amounts to simply extracting the zip file to a location on your file system.

Note

Due to restrictions of the standard Windows file system (NTFS), you should choose a destination path that is as
short as possible. Long paths are known to cause problems, as some RCE files may not be properly extracted from
the zip file.

2.1.4. Starting RCE as a GUI Client
To use RCE with a graphical user interface (GUI), simply start the "rce" executable from Windows
Explorer. Optionally, create a desktop icon from the right-click menu using the "send to > desktop"
option.

Once your RCE instance has started, you can open the configuration file with the menu option
"Configuration > Open Configuration File". Edit the file, save it, and then restart RCE using the
"File > Restart" menu option to apply the changes. There are configuration templates and other
information available via the "Configuration > Open Configuration Information" option. The available
configuration settings are described in the configuration chapter.

2.1.5. Starting a Non-GUI ("Headless") Instance
RCE can also be run from the command line without a graphical user interface (which is called
"headless" mode), which uses less system resources and is therefore recommended when the GUI is
not needed.

To run a headless RCE instance, open a command prompt and run the command

rce --headless -console

While RCE is running, you can enter various console commands described in Section 3.1, “Command
Line Parameters”; note that you need to prefix all RCE commands with "rce" here. To perform a clean
shutdown, for example, type rce stop and press enter.

https://github.com
https://www.gpg4win.org

Setup

6

2.1.6. Installation as a Service on a Windows Server

Please refer to the section "RCE as a Windows Service" in the "RCE Administration and Security
Guide" to install RCE as a service.

2.2. Configuration and Profiles
Each instance of RCE reads its configurations from the profile directory, or profile for short. In this
document, if the distinction is irrelevant or clear from context, we use these terms interchangeably.
On Windows systems, the profile is, by default, located in the main RCE directory C:\Users
\<username>\.rce\default.

If this directory or any of its parent directories do not exist, RCE creates them at first startup and
populates them with a default configuration. RCE creates the directory .rce as a hidden directory.
Thus, you will have to enable the display of hidden directories in order to see that directory.

2.2.1. Choosing the Profile Directory

Since RCE uses the profile directory to load its configuration at startup, it is not possible to change
the profile directory at runtime. Instead, when running RCE via the commandline, you can use the
commandline switch -p to change the profile at startup. Currently, there is no way to select the profile
via the graphical interface of RCE.

You can temporarily (i.e., for a single execution of RCE) change the profile directory by supplying
its path as a parameter for the commandline switch -p. If you supply a relative path (i.e., one not
starting with C:\ or some other drive name), RCE resolves that path relative to its main directory,
i.e., to C:\Users\<username>\.rce. If you supply an absolute path, RCE treats that path as
the path to its profile directory.

Note

You can change the path to which RCE resolves relative profile directories by editing the file rce.ini in the main
folder of your RCE installation. Add the line -Drce.profiles.parentDir="<directory>" and replace
<directory> with the absolute path to a directory which contains your profiles.

In either case, RCE creates the profile directory and its parents if they do not exist. The range of
valid profile names is mainly restricted by your OS's range of valid directory names. We strongly
recommend to restrict your profile names to the range of printable ASCII characters. Furthermore, the
profile name common is reserved for internal use of RCE.

If you want to change the profile location permanently, you can do so by supplying the commandline
switch -p without a parameter. In this case, RCE starts with a text-based profile selection UI which
allows you to set a new location of the default profile. We show this profile selection UI in the
following figure.

Setup

7

Figure 2.1. Profile Selection UI

Choosing the second option ("Select the default profile for future runs") will present a list of available
profiles. On selection of one of these profiles, RCE will not be started using this profile, but instead the
selected profile will be marked as the default profile for future runs. This selection is only stored for
the current user and for the current installation location of RCE. Different users on the same machine
can therefore configure different default profiles. Furthermore, different installations of RCE can have
different default profiles configured.

Note

The Profile Selection UI will only display profiles if they have been started once with RCE 7.0 or newer.

No two instances of RCE may use the same profile simultaneously. Upon startup, RCE checks whether
some other instance of RCE is already running which uses the given profile. In this case, RCE displays
an error message stating that it "failed to lock profile directory" and shuts down. If you want to start
multiple instances of RCE simultaneously on the same machine, you have to specify a different profile
for each instance.

Example 2.1. Choosing the Profile Directory

Install RCE on some system that has not had RCE installed previously. For the sake of this example,
we assume the current user to be called rceuser.

Start RCE without any parameters (i.e., via rce.exe). RCE will use the profile C:\Users
\rceuser\.rce. Execute that command a second time in a second cmd while the first instance is
still running. Startup of RCE will fail, since the profile is already used by the first instance of RCE.

Now execute the command rce.exe -p secondinstance in a second cmd. You will have two
instances of RCE running, one using the profile C:\Users\rceuser\.rce\default, the other
using the profile C:\Users\rceuser\.rce\secondinstance.

Finally, execute the command rce.exe -p. RCE will offer you a list of profiles that you have most
recently used. Pick the profile secondinstance as the default profile. If you now close all running
instances of RCE and restart RCE without any parameters (i.e., via rce.exe), RCE will start using
the profile secondinstance.

Setup

8

2.2.2. Contents of the Profile Directory

As stated above, each profile contains the static configuration of RCE as well as its integrated tools.
The former is defined via the JSON-file configuration.json. For an in-depth introduction
to the JSON file format, please refer to https://www.json.org/ [http://www.json.org/]. The file
configuration.json is located in the root of the profile directory, while the integrated tools are
defined in the directory integration and its subdirectories.

To change the static configuration of RCE, change the contents of the file configuration.json and restart
RCE. You can either change the contents of this file manually using your favorite text editor, or from
the GUI of RCE via the toolbar or the menu entry Configuration.

Note

Recall that RCE only parses its configuration during startup. Thus, if you change the contents of the file
configuration.json, you have to restart RCE to apply these changes.

2.2.3. Configuration Parameters

Configuration parameters are grouped within the configuration file. The configuration parameters are
listed below. There is one list per JSON configuration group. Some example snippets are given as
well. The complete example configurations can be found in the installation data directory in the sub-
directory examples/configuration or by opening the configuration information in RCE.

Table 2.1. "general"

Configuration key Comment Default
value

instanceName The name of the instance that will be shown to all users
in the RCE network. The following placeholders can be
used within the instance name:

• ${hostName} is resolved to the local system's host
name.

• ${systemUser} is resolved to the user account name.

• ${profileName} is resolved to the last part of the
current profile's file system path.

• ${version} is resolved to the build id.

• ${javaVersion} is resolved to the JRE version number.

Example: "Default instance started by \"${systemUser}\"
on ${hostName}".

"<unnamed
instance>"

isWorkflowHost If set to true, the local instance can be used as a workflow
host by other RCE instances. I.e., the workflow controller
can be set to this instance and the workflow data is stored
there as well.

false

isRelay If set to true, the local node will merge all connected
nodes into a single network, and forward messages
between them. This behaviour is transitive; if a relay
node connects to another relay node, both networks will
effectively merge into one.

false

http://www.json.org/
http://www.json.org/

Setup

9

Configuration key Comment Default
value

If set to false (the default value), the local node can
connect to multiple networks at once without causing
them to merge.

tempDirectory Can be used to override the default path where RCE
stores temporary files. Useful if there is little space in
the default temp file location. Must be an absolute path
to an existing directory, and the path must not contain
spaces (to prevent problems with tools accessing such
directories). The placeholder ${systemUser} can be used
for path construction, e.g. "/tmp/custom-temp-directory/
${systemUser}"

An "rce-
temp"
subdirectory
within the
user or
system temp
directory.

enableDeprecatedInputTab If set to true the tab 'Inputs' is enabled again in the
properties view of running workflows. It is disabled
by default due to robustness and memory issues. It is
recommended to use the 'Workflow Data Browser' to see
inputs received and outputs sent.

false

Table 2.2. "backgroundMonitoring"

Configuration key Comment Default
value

enabledIds Comma-separated list of identifiers referring to certain
kind of monitoring data that should be logged
continuously in the background. Currently, only
'basic_system_data' is supported.

intervalSeconds Logging interval 10

Table 2.3. "network"

Configuration key Comment Default
value

requestTimeoutMsec The timeout (in milliseconds) for network requests that
are made by the local node. If this time expires before a
response is received, the request fails.

40000

forwardingTimeout Msec The timeout (in milliseconds) for network requests that
are forwarded by the local node on behalf of another
node. If this time expires before a response is received,
an error response is sent back to the node that made the
request.

35000

connections A map of all connections that the local instance tries to
establish on startup. This allows the local instance to act
as a client. For each connection a unique identifier (id)
must be given.

{} (an
empty map
in JSON
format)

connections/[id]/host IP address of the host to connect to. Host names and IPv4
addresses are permitted.

-

connections/[id]/port Port number of the remote RCE instance. -

connections/[id]/
connectOnStartup

If set to true, the connection is immediately established
on startup.

true

connections/[id]/
autoRetryInitialDelay

The initial delay, in seconds, to wait after a failed or
broken connection before a reconnect attempt is made.

-

Setup

10

Configuration key Comment Default
value

This configuration must be present to enable the auto-
reconnect feature.

connections/[id]/
autoRetryDelayMultiplier

A decimal-point value >= 1 that the delay time is
multiplied with after each consecutive connection failure.
This provides an "exponential backoff" feature that
reduces the frequency of connection attempts over time.
This configuration must be present to enable the auto-
reconnect feature.

-

connections/[id]/
autoRetryMaximumDelay

Defines an upper limit for the delay time, even when
applying the multiplier would create a higher value.
This can be used to maintain a minimum frequency
for retrying the connection. This configuration must be
present to enable the auto-reconnect feature.

-

serverPorts A map of all server ports that the local instance registers
for other instances to connect to. This allows the local
instance to act as a server. For each server port a unique
identifier (id) must be given.

{} (an
empty map
in JSON
format)

serverPorts/[id]/ip The IP address for other instances to connect to. -

serverPorts/[id]/port The IP port number (1024-65535) for other instances to
connect to.

-

ipFilter Allows to limit the incoming connections to a set of IP
addresses.

-

ipFilter/enabled If set to true, the ip filter active. false

ipFilter/allowedIPs List of IP addresses, which are allowed to connect to the
instance.

[] (an empty
list in JSON
format)

Note

IMPORTANT: When setting up a network of RCE instances, keep in mind that the RCE network traffic is currently
not encrypted. This means that it is not secure to expose RCE server ports to untrusted networks like the internet.
When setting up RCE connections between different locations, make sure that they either connect across a secure
network (e.g. your institution's internal network), or that the connection is secured by other means, like SSH
tunneling or a VPN. Alternatively, you can set up an uplink connection in RCE instead of the standard RCE
connections.

Network Server Sample:

"network" : {
 "serverPorts" : {
 "relayPort1" : {
 "ip" : "127.0.0.1",
 "port" : 21000
 }
 },
 "ipFilter" : {
 "enabled" : false,
 "allowedIPs" : [
 "127.0.0.1",
 "127.0.0.2"
]
 }
 }

Network Client Sample:

"network" : {
 "connections" : {
 "exampleConnection1" : {
 "host" : "127.0.0.1",

Setup

11

 "port" : 21000,
 "connectOnStartup": false,
 "autoRetryInitialDelay" : 5,
 "autoRetryMaximumDelay" : 300,
 "autoRetryDelayMultiplier" : 1.5
 }
 }
 }

Table 2.4. "componentSettings"

Configuration key Comment Default
value

de.rcenvironment. cluster Configuration of the cluster workflow component. -

de.rcenvironment. cluster/
maxChannels

Maximum number of channels, which are allowed to be
opened in parallel to the cluster server.

8

Table 2.5. "thirdPartyIntegration"

Configuration key Comment Default
value

tiglViewer Configuration of the external TiGL Viewer application
integration. This needs to be configured to enable RCE´s
TiGL Viewer view and thus, the TiGL Viewer workflow
component. Note:TiGL Viewer must be downloaded and
installed separately.

-

tiglViewer/binaryPath The path to the TiGL Viewer executable file. Must be an
absolute path.

-

tiglViewer/
startupTimeoutSeconds

The timeout in seconds, to wait for the external TiGL
viewer application to start and determine its process id.

10

tiglViewer/embedWindow If set to false, the external TiGL Viewer application
Window will not be embeded into RCE´s TiGL Viewer
view.

true

python Configuration of a external Python installation. This
needs to be configured to enable Python script language
for the Script Component. Note: Python must be
downloaded and installed separately.

-

python/binaryPath The path to a local python installation. This needs to be
configured to enable Python script language for the Script
Component

-

Third Party integration Python path example:

"thirdPartyIntegration": {
 "python":{
 "binaryPath": "/path/to/python/executable"
 }
 }

Table 2.6. "sshServer"

Configuration key Comment Default
value

enabled If set to true the local instance acts as an SSH server. false

ip (deprecated alias:
"host")

The host's ip address to bind to. If you want to make
the SSH server accessible from remote, you should set

127.0.0.1

Setup

12

Configuration key Comment Default
value

this to the IP of the machine's external network interface.
Alternatively, you can set this to "0.0.0.0" to listen on
all available IPv4 addresses, if this is appropriate in your
network setup.

port The IP port number (1024-65535) for SSH or Uplink
clients to connect to.

-

idleTimeoutSeconds The time to keep an idle SSH connection alive, in
seconds. For typical SSH usage, the default value is
usually sufficient. Higher values are, for example, needed
when invoking long-running tools using the SSH Remote
Access feature.

10

accounts A map of accounts. For each account a unique identifier
(account name) must be given.

{} (an
empty map
in JSON
format)

[account name]/
passwordHash

The hashed password for the account, if password
authentication is used. If the SSH account is configured
using the configuration UI, the hash is automatically
computed and stored here.

-

[account name]/password
(deprecated)

The password for the account. SSH passwords can
also be configured as plain text, which is however
not recommended. To prevent misuse of the configured
login data, any configuration file with SSH accounts
must be secured against unauthorized reading (e.g. by
setting restrictive filesystem permissions). A more secure
alternative is to just store the password hash.

-

[account name]/publicKey The public key for the account, if keyfile authentication
is used. Only RSA keys in the OpenSSH format are
supported. The public key has to be entered here in the
OpenSSH format (a string starting with "ssh-rsa", like
it is used for example in authorized_keys files). Only
applicable on RCE version 7.1 or newer.

-

[account name]/role The role of the account. See next table for a list of the
possible roles.

-

[account name]/enabled If set to true, the account is enabled. true

SSH Server Sample:

"sshServer" : {
 "enabled" : true,
 "ip" : "127.0.0.1",
 "port" : 31005,
 "accounts" : {
 "ra_demo" : {
 // hashed form of the "ra_demo" test password; DO NOT reuse this for live accounts!
 "passwordHash" : "$2a$10$qxCBuEvq0xWoOlox2dVbCu8zCYsyxQMBe5SAnS2HId0uaEp59aAu2",
 "role" : "remote_access_user",
 "enabled" : true
 }
 }
 }

Table 2.7. Possible roles for SSH accounts

Role name Allowed commands

uplink_client (Standard role for using
Uplink connections)

Cannot open a command shell or run any commands

Setup

13

Role name Allowed commands

remote_access_user (Standard role for
using SSH remote access tools and
workflows)

ra|sysmon (can use Uplink connections)

remote access (backwards
compatibility alias for
remote_access_user)

ra|sysmon (can use Uplink connections)

remote_access_admin ra|ra-admin|sysmon|components

workflow_observer components|net info|sysmon|wf list|wf details

workflow_admin components|net info|sysmon|wf

local_admin cn|components|mail|net|restart|shutdown|stop|stats|tasks|
auth

instance_management_admin im|net info|auth

instance_management_delegate_user cn|components|net|restart|shutdown|stop|stats|tasks|wf|ra-
admin|auth

developer <all>

Table 2.8. "uplink"

Configuration key Comment Default
value

uplinkConnections A map of Uplink connections.This allows the local
instance to act as an Uplink client. For each connection a
unique identifier (id) must be given.

{} (an
empty map
in JSON
format)

uplinkConnections/[id]/
displayName

The name for the connection that will be shown in the
network view.

-

uplinkConnections/[id]/
host

The remote RCE instance (Uplink relay) to connect to.
Host names and IPv4 addresses are permitted.

-

uplinkConnections/[id]/
port

Port number of the remote RCE instance. -

uplinkConnections/[id]/
loginName

The login name for authentication. -

uplinkConnections/[id]/
keyfileLocation

Path to the private key file, if keyfile authentication
is used. Only RSA keys in the OpenSSH format are
supported.

-

uplinkConnections/[id]/
noPassphrase

This option should only be set if a private key that
requires no passphrase is used for authentication. If
set to true, RCE does not ask for a passphrase before
connecting.

false

uplinkConnections/[id]/
clientID

If other RCE instances use the same account to connect
to the relay, you have to set a unique client ID here (max.
8 characters)

default

uplinkConnections/[id]/
isGateway

If set to true, this instance will act as an Uplink gateway
(see chapter Section 3.5.2, “Uplink Connections” for
further information)

false

uplinkConnections/[id]/
connectOnStartup

If set to true, the connection is immediately established
on startup. (Only possible when the password is stored.)

false

uplinkConnections/[id]/
autoRetry

If set to true, RCE will try to automatically reconnect the
connection (every 5 seconds) if it can not be established

false

Setup

14

Configuration key Comment Default
value

or is lost of a network error. (Only possible when the
password is stored in the secure store.)

Uplink Connection Sample:

"uplink" : {
 "uplinkConnections" : {
 "exampleUplinkConnectionID" : {
 "displayName" : "example",
 "clientID": "client1",
 "host" : "127.0.0.1",
 "port" : 31005,
 "connectOnStartup": false,
 "autoRetry" : false,
 "isGateway" : false,
 "loginName" : "ra_demo"
 //The passphrase is not stored here, it has to be entered when connecting.
 }
 }
 }

Table 2.9. "sshRemoteAccess"

Configuration key Comment Default
value

sshConnections A map of SSH connections.This allows the local instance
to act as a SSH remote access client. For each connection
a unique identifier (id) must be given.

{} (an
empty map
in JSON
format)

sshConnections/[id]/
displayName

The name for the connection that will be shown in the
network view.

-

sshConnections/[id]/host The remote RCE instance to connect to. Host names and
IPv4 addresses are permitted.

-

sshConnections/[id]/port Port number of the remote RCE instance. -

sshConnections/[id]/
loginName

The login name for authentication. -

sshConnections/[id]/
keyfileLocation

Path to the private key file, if keyfile authentication
is used. Only RSA keys in the OpenSSH format are
supported.

-

sshConnections/[id]/
noPassphrase

This option should only be set if a private key that
requires no passphrase is used for authentication. If
set to true, RCE does not ask for a passphrase before
connecting.

false

sshConnections/[id]/
connectOnStartup

If set to true, the connection is immediately established
on startup. (Only possible when the password is stored in
the secure store.)

false

sshConnections/[id]/
autoRetry

If set to true, RCE will try to automatically reconnect the
connection (every 10 seconds) if it can not be established
or is lost of a network error. (Only possible when the
password is stored in the secure store.)

false

Remote Access Connection Sample

"sshRemoteAccess" : {
 "sshConnections" : {
 "exampleSSHConnection" : {
 "displayName" : "example",
 "host" : "127.0.0.1",
 "port" : 31005,
 "connectOnStartup": false,

Setup

15

 "autoRetry" : false,
 "loginName" : "ra_demo"
 //The passphrase is not stored here, it has to be entered when connecting.
 }
 }
 }

Table 2.10. "smtpServer"

Configuration key Comment Default
value

host The IP address or hostname of the SMTP server, which
should be used for mail delivery.

-

port Port number of the SMTP server. -

encryption Can either be "explicit" or "implicit". Select "implicit"
if you want to connect to the SMTP server using SSL/
TLS. Select "explicit" if you want to connect to the SMTP
server using STARTTLS. Unencrypted connections are
not permitted.

-

username The login name for authentication. -

password The obfuscated password for authentication. Plaintext
password cannot be used here. To create the obfuscated
password from the plaintext password, you need to
use the Configuration UI described in Section 2.2.4,
“Configuration UI”

-

sender Email address, which should be displayed as the sender
in the sent email.

-

Note

The used SMTP server needs to be configured using the Configuration UI described in Section 2.2.4.2, “Mail:
SMTP server configuration”, since the password needs to be obfuscated.

2.2.4. Configuration UI

If you want to configure SSH accounts with passphrases or you want to configure e-mail support for
the instance, you need to use the Configuration UI. You can access the interactive tool by executing
RCE from the command line with the option "rce --configure" or by using the "Launch Configuration
UI" script in the "extras" folder of your RCE installation directory.

Setup

16

Figure 2.2. Configuration tool for SSH account and SMTP server
configuration

2.2.4.1. Remote Access: SSH account configuration

If the RCE instance shall act as a SSH server, you can configure SSH accounts using the Configuration
UI, which encrypts the SSH passwords before storing them in the configuration file.

Note

All SSH accounts configured with this tool initially have the role "remote_access_user", which allows to execute
commands needed for remote access on tools and workflows. If you want to change the role of an SSH account,
you can do this by editing the configuration file manually (see Table 2.7, “Possible roles for SSH accounts”).

2.2.4.2. Mail: SMTP server configuration

If you use the tool output verification (cf. Section 3.3.8, “Manual Tool Result Verification”) and want
RCE to send the verification key via email, you need to configure an SMTP server. RCE does not send
e-mails directly to the recipient, but instead sends the e-mails to an SMTP server, which delivers them
to the recipient. You need to use the Configuration UI to configure such an SMTP server, since the
password used for authentication needs to be obfuscated before it is stored in the configuration file.
The SMTP server parameters that need to be configured are described in more detail in Table 2.10,
“"smtpServer"”

Setup

17

Note

Due to a known bug on Windows system with a German keyboard layout, the Configuration UI inserts the
characters "q@" into a text field if you want to insert the @ sign. You can manually remove the additional character
"q".

2.2.5. Importing authorization data without GUI access
There are currently two categories of authorization data that should not be simply written into
configuration files for security reasons: SSH login passwords and keyfile passphrases, and RCE
authorization group keys (the "export/import" strings). To support scenarios where interactive entry
is not possible, for example daemon/service installations, a file-based import mechanism is provided
as well.

The general usage is the same for all kinds of import data:

• Locate the folder of the profile that you want to import into.

• If it does not exist yet, create a folder "import" within that profile directory.

• Within this "import" folder, create the sub-folder mentioned in the specific description below;
for example, "auth-group-keys".

• To perform an import, create a file inside this specific sub-folder and edit it, or copy a file that you
already prepared into that folder. These files are referred to as "import files". The filenames and
contents to use for them are described in the specific sections below.

• Once you have created or copied all import files that you want to processs, (re)start RCE. Currently,
all import file processing is done on startup. (Note: Future versions of RCE may be expanded to
also detect and process new import files without a restart.)

• If a file has been successfully imported, it is deleted to minimize the time that it is present in the
filesystem (for security), and to prevent it from being processed again on every RCE start. Make
sure that this file is not the only reference to the authorization data that you have!

2.2.5.1. Importing or deleting RCE authorization group keys

This section focusses on importing or deleting already defined authorization groups via their group
keys. Creating groups is explained in Section 3.6, “Tool publishing and authorization”.

• Group key import files must be placed in <profile>/import/auth-group-keys/ .

• For group keys, the import files can have any name. For each key you wish to import a single file
is required.

• The import file's content must be the group import string; it should look similar to
"MyGroupName:23b0ad9043a39496:1:1K6D5C9BKYu[...]sSMLlj0Tg".

• Deleting groups is also supported. To delete a group, write "delete" into the file, followed by the
full id (name + random part) of the group you want to delete. For convenience, you can also use the
full import string as used above. For example, if you wanted to delete the group mentioned above,
either of these contents would work:

• "delete MyGroupName:23b0ad9043a39496"

• "delete
MyGroupName:23b0ad9043a39496:1:1K6D5C9BKYu[...]sSMLlj0Tg"

• After successful import or deletion of a group key, the file is deleted from the profile folder.

Setup

18

2.2.5.2. Importing SSH Uplink passwords or keyfile passphrases

• Uplink password/passphrase import files must be placed in <profile>/import/uplink-
pws/ .

• The names of the import files are relevant: These must be the "connection id" used in the Uplink
connection configuration. This id is the string right in front of the the part outside of the connection's
configuration block (e.g. "myConnection" : { ...<connection settings>... }).
For convenience on Windows, a ".txt" extension can be added to this filename; this will be cut away
by the importer.

• The content of the files is the password or keyfile passphrase.

• When the profile is launched, the password or keyfile passphrase is imported into RCE's secure
storage and the import files are deleted to mitigate potential security risks.

• As this is never actually needed, deleting passwords is not directly supported. If you have imported a
password/passphrase you would rather remove from RCE's secure storage, simply import a dummy
password for the same connection id. This will overwrite and erase the previous data.

2.2.5.3. Importing SSH Remote Access passwords or keyfile
passphrases

• Uplink password/passphrase import files must be placed in <profile>/import/ra-pws/ .

• The names of the import files are relevant: These must be the "connection id" used in the Remote
Access connection configuration. This id is the string right in front of the the part outside of
the connection's configuration block (e.g. "myConnection" : { ...<connection
settings>... }). For convenience on Windows, a ".txt" extension can be added to this
filename; this will be cut away by the importer.

• The content of the files is the password or keyfile passphrase.

• When the profile is launched, the password or keyfile passphrase is imported into RCE's secure
storage and the import files are deleted to mitigate potential security risks.

• As this is never actually needed, deleting passwords is not directly supported. If you have imported a
password/passphrase you would rather remove from RCE's secure storage, simply import a dummy
password for the same connection id. This will overwrite and erase the previous data.

19

3. Usage
This chapter describes the main usage concepts.

3.1. Command Line Parameters
General syntax

> rce --[RCE arguments] -[RCP arguments] -[vmargs -[VM arguments]]

Table 3.1. Command line arguments for RCE

Argument Type Description

profile "<profile id or path>" RCE Sets a custom profile folder to use. If only an id (any
valid directory name) is given, the profile directory
"<user home>/.rce/id" is used. Alternatively, a full
filesystem path can be specified.

profile RCE If the profile argument is specified without a profile
id or path, RCE launches the Profile Selection UI,
which allows to select a profile folder for the startup as
described in ???.

batch "<command string>" RCE Behaves like the "exec" command, but also implies the
"--headless" option and always shuts down RCE after
execution.

headless RCE Starts RCE in a headless modus without GUI. It will
remain in the OSGi console and waits for user input.

allow-privileged RCE Allows running RCE in a privileged process, i.e.
as administrator (on Windows) or root (on Linux).
Usually this is forbidden and the prohibition is
enforced at application startup. However in certain
circumstances it might be required to run RCE with
such privileges and for these cases this flag can be used
to disable the check at startup. However this is only to
be used with absolute caution and in accordance with
the system administrator!

exec "<command string>" RCE Executes one or more shell commands defined by
<command string>. For the list of available commands,
refer to the command shell documentation. This
argument is usually used together with --headless
to run RCE in batch mode. Multiple commands can
be chained within <command string> by separating
them with " ; " (note the spaces); each command is
completed before the next is started.

You can use the "stop" command at the end of the
command sequence to shut down RCE after the other
commands have been executed. However, any error
during execution of these commands will cancel the
sequence, and prevent the "stop" command from
being executed. To ensure shut down at the end of the
command sequence, use the --batch option instead
of "--exec".

Usage

20

Argument Type Description

As an example, rce --headless --exec
"wf run example.wf ; stop" will execute
the "example.wf" workflow in headless mode and
then shut down RCE. However, if the workflow
fails to start, RCE will keep running, as the "stop"
command is never executed. To attempt execution
of the workflow file, but then always shut down
regardless of the outcome, use rce --batch "wf
run example.wf" instead.

configure RCE Starts the RCE Configuration UI (Section 2.2.4,
“Configuration UI”) which can be used to configure
SSH accounts with passphrases or to configure e-mail
support for the RCE instance.

data @noDefault RCP Set the default workspace location to empty

consoleLog RCP Logs everything for log files on the console as well.

console RCP Runs RCE with an additional OSGi console window,
which allows you to execute RCE shell commands.
See the Command Shell documentation for more
information.

Deprecated: console <port> RCP Specify the port that will be used to listen for telnet
connections. (NOTE: this access is insecure; configure
SSH access instead)

clean RCP Cleans before startup

vmargs VM Standard JVM arguments. This argument needs to be
listed before any arguments intended to be passed to
the JVM (i.e. arguments prefixed with -D), otherwise
they will not be passed correctly. Also note that the
JVM will receive these arguments appended to the
ones specified in the rce.ini file (the file itself will not
be modified).

Example:
"rce.exe -vmargs -D<some-arg>=<some-value>"

Dde.rcenvironment.rce.
configuration.dir=
<insert-config-path>

VM Sets the configuration directory

Drce.network.
overrideNodeId =<some-id>

VM Sets the local node id, overriding any stored value.
This is mostly used for automated testing.
Example:
"-Drce.network.overrideNodeId=
a96db8fa762d59f2d2782f3e5e9662d4"

Dcommunication.
uploadBlockSize=
<block size in bytes>

VM Sets the block size to use when uploading data to a
remote node. This is useful for very slow connections
(less than about 10 kb/s) to avoid timeouts. The default
value is 262144 (256 kb).

Example:
"-Dcommunication.uploadBlockSize=131072" - sets
the upload block size to 128kb (half the normal size)

Usage

21

3.2. Graphical User Interface
This section introduces the Graphical User Interface (GUI).

The GUI of RCE is composed of different views and editors (besides standard GUI elements such as
the menu bar, status bar, etc.). Views can be (re-)arranged by the user. They can even be closed and
opened again. Some views are closed by default, but can be opened as desired. To open a view go
to: Window → Show view.

Figure 3.1. Workbench with different views and the workflow editor opened

Left hand side:

• Project Explorer: View to manage projects. All relevant data including workflow files needs to be
organized in projects.

• Workflow List: Lists all active workflows and allows to manage them (stop, pause, resume, dispose).

Right hand side and center:

• Workflow Editor: Core view of RCE used to build and configure workflows.

• Palette: Lists all available workflow components. If RCE runs in a distributed environment
this includes local as well as remote workflow components. At the top, it also provides actions
for connecting workflow components. We show the connection editor in the following Figure.
Additionally, connections of the workflow are shown in the Properties view at the bottom, if the
background of the workflow editor is selected.

Usage

22

Figure 3.2. Connection Editor

Bottom:

• Log: Shows all log output of RCE, e.g. error messages during workflow execution.

• Network View: Shows all RCE instances of the distributed RCE network and their published
workflow components. It also shows the outgoing connections of the own RCE instance and allows
to manage them (start, stop, etc.). Furthermore, you are able to see monitoring data like CPU or
RAM usage for each instance.

Figure 3.3. Network View

• Workflow Data Browser: Shows workflow related result data.

Usage

23

Figure 3.4. Workflow Data Browser

• Properties: Allows configuration of workflow components (e.g. Inputs/Outputs) if they are selected
in the workflow editor. View adapts to selected workflow component.

• Workflow Console: Shows all native console line output of integrated tools during workflow
execution. Provides full text search.

Figure 3.5. Workflow Console

3.3. Workflows
This section describes the basics of workflows in RCE.

Usage

24

3.3.1. Rationale
RCE is designed to execute automated, distributed workflows. Workflows consist of so called
workflow components which can be coupled with each other. Loops are supported, even multi-nested
ones.

3.3.2. Getting Started
To get started with workflows in RCE it is recommended to both read the following sections about
workflows and walk through the example workflows provided in RCE. The sections here refer to the
workflow examples where it is useful and vice versa.

Workflows in RCE are encapsulated in so called projects. To create the workflow examples project
go to: File → New → Workflow Examples Project. A dialog appears. Leave the default project
name or give it a name of your choice and confirm by clicking Finish. In the Project Explorer
on the left-hand side, the newly created project is shown. The example workflows are grouped in
sub folders. It is recommended to walk through the workflows following the prefix starting with
01_01_Hello_World.wf.

3.3.3. Workflow Components
Workflow components are either tools that are integrated by users or are provided by RCE supplying
multi-purpose functionality. The following list shows workflow components provided by RCE
grouped by purpose (workflow components that are deprecated (i.e., they are removed soon) or that
are not recommended to use anymore are left out):

• Data: Database

• Data Flow: Input Provider, Output Writer, Joiner, Switch

• Evaluation: Optimizer, Design of Experiments, Parametric Study, Converger, Evaluation Memory

• Execution: Script, Cluster, Excel

• XML: XML Loader, XML Merger, XML Values

• CPACS: TiGL Viewer, VAMPzero Initializer

Note

The Optimizer component uses the Dakota toolkit [https://dakota.sandia.gov/] in order to perform the actual
optimization. This toolkit is included in the RCE distribution, i.e., it is installed together with RCE. On some
systems, however, notably Ubuntu 18.04, this toolkit cannot be executed, as the required library libgfortran3 is not
installed by default. If the toolkit cannot be executed, the Optimizer component will issue the error Could not
start optimizer. Maybe binaries are missing or not compatible with system.;
cause: Optimizer exited with a non zero exit code. Optimizer exit code = 127
(E#1543567120128) or similar in the workflow console and the data management.

Please refer to the documentation or the administrator of your system in order to satisfy the missing dependency
of the Dakota toolkit.

The example workflows in subfolder 02_Component Groups introduce some of the workflow
components provided. Additionally, there is a documentation for each workflow component available
in RCE. To access it, you can either rightclick on a component in a workflow and select Open Help
or press F1. A help view opens on the right-hand side. Moreover there is an entry Help Contents
in the Help menu where you can navigate to the component help you require.

The XML and CPACS components are able to read or extract data from an XML file via dynamic in-
or outputs. The XPathChooser is a feature that provides help selecting the item, which shall be read or
extracted. Add an in- or output and press the XPath choosing... button to open a window where

https://dakota.sandia.gov/
https://dakota.sandia.gov/

Usage

25

you can select the XML file which contains the item that shall be selected. After choosing the file, the
XPathChooser opens containing a tree, symbolizing the XML file. By selecting an element, the text
below is updated and displays the current path. The last two columns are used to choose attributes.
The attribute name can be selected via the column Attributes. In the column Values the proper
value can be selected. Use a double-click on an element to expand or fold the tree. The chosen XPath
will be written in the text field of the window in which the XPathChooser has been opened originally.
Using this text field, new paths can be created. Add a slash and the name of the node that shall be
created to the existing path. The new path will be added during the workflow run.

New XPaths can only be generated within the inputs tab. Using the outputs tab will cause an error.

3.3.4. Coupling Workflow Components
A workflow component can send data to other workflow components. Therefore, a so called
connection needs to be created between the sending workflow component and the receiving one. For
that purpose, workflow components can have so called inputs and outputs. A connection is always
created between an output and an input. You can think of a connection as a directed data channel.
Data is sent as atomic packages which are not related to each other (there is no data streaming between
workflow components). Supported data types are:

Primitive data types:

• Short Text:A short text (up to 140 characters)

• Integer:Integer number

• Float:Floating point number

• Boolean:Boolean value (true or false)

Referenced data types (The actual data is stored in RCE's data management and only a reference is
transfered):

• File:File

• Directory:Directory

Other data types

• Small Table: The RCE syntax for Small Tables is [[a,b,...],[c,d,...],...], whereat the table values
a,b,c,d are restricted to values of type Short Text, Integer, Float, Boolean (primitive data types) as
well as File and Directory. Be aware, that in case of File and Directory simply the path to the Files
or Directories will be stored in the Small Table. Each column holds the same number of entries.
The total number of possible cells is up to 100.000.

• Vector:one-dimensional "Small Table" (one column) restricted to values of type Float i.e. [x,y,z,...]

• Matrix:Small Table restricted to values of type Float

Not all of the workflow components support all of the data types listed. A connection can be created
between an output and an input if:

• The data type of the output is the same as or convertible to the data type of the input.

• The input is not already connected to another output.

Note that data from an output can be sent to multiple inputs, but an input can just receive data from
a single output.

The following table shows which data types are convertible to which other types:

Usage

26

Table 3.2. Data Type Conversion Table

To

From
Boolean Integer Float Vector Matrix

Small
Table

Short
Text

File Directory

Boolean x x x x x

Integer x x x x

Float x x x

Vector x x

Matrix x

Small
Table

Short
Text

x

File

Directory

3.3.5. Execution Scheduling of Workflow Components
The execution of workflows is data-driven. As soon as all of the desired input data is available, a
workflow component will be executed. Which input data is desired is defined by the component
developer (for RCE's default workflow components), the tool integrator, and/or the workflow creator.
The workflow component developer and tool integrator decide which options are allowed for a
particular workflow component. The workflow creator can choose between those options at workflow
design time. The following options exist:

Input handling:

• Constant: The value won't be consumed during execution and will be reused in the next iteration (if
there is any loop in the workflow). The workflow will fail if there is more than one value received,
except for nested loops: All inputs of type Constant are resetted within nested loops, after the nested
loop has been finished.

• Single (Consumed): The input value will be consumed during execution and won't be reused in
the next iteration (if there is any loop in the workflow). Queuing of input values is not allowed. If
another value is received before the current one was consumed, the workflow will fail. This can
guard against workflow design errors. E.g., an optimizer must not receive more than one value at
one single input within one iteration.

• Queue (Consumed): The input value will be consumed during execution and won't be reused in the
next iteration (if there is any loop in the workflow). Queuing of input values is allowed.

Execution constraint:

• Required: The input value is required for execution. Thus, the input must be connected to an output.

• Required if connected: The input value is not required for execution (e.g., if a default value will be
used as fall back within the component). Thus, the input doesn't need to be connected to an output.
But if it is connected to an output, it will be handled as an input of type Required.

• Not required: The input value is not required for execution. Thus, the input doesn't need to be
connected to an output. If it is connected to an output, the input value will be passed to the component
if there is a value available at the time of execution. Values at inputs of type Not required cannot
trigger component execution except if it is the only input defined for a component. Note: With this
option, non-deterministic workflows can be easily created. Use this option carefully. If in doubt,
leave it out.

Usage

27

Note: With RCE 6.0.0 the scheduling options changed. Below is the migration path:

• Initial was migrated to Constant and Required.

• Required was migrated to Single (Consumed) and Required.

• Optional was migrated to Single (Consumed) and Required if connected.

If you encounter any problems with workflows created before RCE 6.0.0, it is likely, that it affects
the migration to Single (Consumed) instead of to Queue (Consumed). We decided to migrate
conservatively to not hide any existing workflow design errors. So, if queuing of input values is
allowed for an input, just change the input handling option to Queue (Consumed) after the workflow
was updated. Another issue can affect the migration of Optional. If it affects an input of the script
component, check the option, which let the script component execute on each new value at any of its
inputs. Also check Not required as an alternative execution constraint option.

3.3.6. (Nested) Loops
Workflow components can be coupled to loops. A loop must always contain a so-called driver
workflow component. Driver workflow components (group "Evaluation") are: Optimizer, Design of
Experiments, Parametric Study, Converger (see the example workflow "02_02_Evaluation_Drivers").
The responsibilities of a driver workflow component in a loop are:

• Send values to the loop and receive the result values.

• Finish the loop based on some certain criteria.

If a loop contains another loop, we speak of the latter as a nested loop. A nested loop can contain
again another loop and so on. To create workflows with nested loops (see example workflows in
"03_Workflow_Logic"), some certain concepts behind nested loops must be understood:

• Loop level: If a loop contains another loop, that loop is considered as a nested loop with a lower
loop level. From the perspective of the nested loop, the other loop is considered as a loop with an
upper loop level.

• If a driver workflow component is part of a nested loop, you need to check the checkbox in the
"Nested Loop" configuration tab

• Data exchange between loops of different loop levels is only allowed via a driver workflow
component. Thereby, only particular inputs and outputs of driver workflow components are allowed
to be connected to inputs and outputs of the next upper loop level and particular ones to inputs and
outputs of the same loop level. For example, if a 'same loop level' output is connected to a loop with
an upper loop level, the workflow won't succeed or might even get stuck. Below you find tables of
inputs and outputs for each driver workflow component and whether they must be connected to the
same loop level or to the next upper loop level.

Note
In the inputs and outputs tables of driver workflow components (in 'Inputs/Outputs' properties tab), the loop
level requirement is present in a particular column for each input and output.

Table 3.3. Inputs of Optimizer

Input Loop Level

* - lower bounds - start value To next upper
loop level

* - upper bounds - start value To next upper
loop level

Usage

28

Input Loop Level

* - start value To next upper
loop level

* (Objective functions) To same loop level

* (Constraints) To same loop level

d*.d* (Gradients) To same loop level

Table 3.4. Outputs of Optimizer

Output Loop Level

*_optimal To next upper
loop level

Done To next upper
loop level

* (Design variables) To same loop level

Gradient request To same loop level

Iteration To same loop level

Table 3.5. Inputs of Design of Experiments

Input Loop Level

*_start To next upper
loop level

* To same loop level

Table 3.6. Outputs of Design of Experiments

Output Loop Level

Done To same loop level

* To same loop level

Table 3.7. Inputs of Parametric Study

Input Loop Level

*_start To next upper
loop level

* To same loop level

Table 3.8. Outputs of Parametric Study

Output Loop Level

Done To same loop level

* To same loop level

Table 3.9. Inputs of Converger

Input Loop Level

*_start To next upper
loop level

* To same loop level

Usage

29

Table 3.10. Outputs of Converger

Output Loop Level

Converged To next upper
loop level

Converged absolute To next upper
loop level

Converged relative To next upper
loop level

*_converged To next upper
loop level

Done To same loop level

* To same loop level

3.3.7. Fault-tolerant Loops
Workflow components of a loop can fail. There are two kind of failures:

• A workflow component fails gracefully, i.e. it couldn't compute any results for the inputs received
but works normally. In this case, it sends a value of type "not-a-value" with the specified cause to
its outputs which finally are received by the driver workflow components as results.

• A workflow component fails, i.e. it crashes for an unexpected reason. In this case, the workflow
engine sends values of type "not-a-value" with the specified cause as results to the driver workflow
component.

In the "Fault Tolerance" configuration tab of workflow driver components, it can be configured how
to handle failures in loops, for both kind of failures separately.

3.3.8. Manual Tool Result Verification
After the execution of an integrated tool, the results are sent via outputs to the next workflow
component (e.g. to the next integrated tool). By default, this is done in an automated manner without
any user interaction. If the data should be verified by a person responsible for the tool before they are
sent further, manual verification of tool results must be enabled in the tool integration wizard in the
'Verification' tab of the 'Inputs and Outputs' page.

In case manual verification of tool results is enabled, the results are hold after each tool execution
and the corresponding workflow component remains in state "Waiting for approval". Then, there are
two options:

• Approve tool results: The tool results are sent via the outputs to the next workflow component and
the workflow continues normally.

• Reject tool results: The tool results are not sent via the outputs to the next workflow component
and the workflow is cancelled.

To apply one of the options, a so called verfication key is required. The verification key is generated by
RCE after each tool execution and is written to a file on the file system of the machine which executed
the tool. (The location is specified in the 'Verification' tab of the 'Inputs and Outputs' page in the tool
integration wizard.) Optionally, the verification key can also be sent via e-mail if e-mail support is
configured for the RCE instance where the tool is integrated. (E-mail support can only be configured
using the Configuration UI as described in Section 2.2.4.2, “Mail: SMTP server configuration”) E-

Usage

30

mail delivery can be enabled and the recipients can be defined in the 'Verification' tab of the 'Inputs
and Outputs' page in the tool integration wizard.

Once the verification key is known (either from the file or an e-mail), perform follwing steps to approve
or reject the tools results:

• Start an RCE instance with a graphical user interface. (Your tool must be available, i.e. it must
appear in the palette of the workflow editor.)

• In the menu bar at the top, go to Run -> Verify tool results...

• A dialog appears that guides you through the verification process.

3.4. User-Defined Components
RCE comes with a number of components that already allow you to create rather large and complex
workflows. It is technically possible to construct a workflow using only the components that come
with RCE, since you can call external tools via the Script-component. Maintaining such a workflow
will, however, prove quite cumbersome. Moreover, every instance of the Script-component in an RCE
workflow must be configured individually, since there exists no possibility to share configuration
between component instances. Finally, while components can be shared among a network of RCE
instances (cf. Section 3.6, “Tool publishing and authorization”) this sharing does not extend to
configuration values such as the script of a Script-component. To simplify the construction, sharing,
and maintenance of workflows containing calls to external tools, RCE allows for the integration of
such external tools as user-defined components.

3.4.1. Integrating External Tools as Components
If you want to integrate an external tool, the tool must

• be callable via command line,

• have a non-interactive mode which is called via command line, and

• have its input provided through environment variables, command line arguments, or files

If these requirements are fulfilled, a tool can be integrated into RCE. An integration file describes the
"interface" of the tool to RCE. This interface consists of, among others, its inputs, outputs, as well as
how the tool is executed. The integration file can be found in the profile directory (cf. Section 2.2,
“Configuration and Profiles”) in the subdirectory integration/common/<tool name>, where
<tool name> is the name under which your tool will be available as a component in RCE. You can
find an example of such an integration file by importing the Workflow Examples Project (via File ->
New -> Workflow Examples Project) and opting to integrate an example tool during the import.

If you use RCE with a graphical user interface you can integrate a tool via a wizard which guides
you through the settings. This wizard can be found in the menu Tool Integration -> Integrate Tool....
Required fields are marked with an asterisk (*). When the wizard is finished and if everything is
correct, the integrated tool will automatically show up in the Workflow Editor palette.

Note

The wizard has a dynamic help, which is shown by clicking on the question mark on the bottom left or by pressing
F1. It will guide you through the pages of the wizard.

One major part of the tool integration consists of the definition of a pre-, an execution-, and a post
script. Pre- and post script define how incoming data from RCE will be passed to the tool, and how

Usage

31

outgoing data from the tool will be passed back to RCE, respectively. These scripts are written in
Python and executed using Jython, a Java implementation of Python 2. Please make sure that your pre-
and post scripts have the desired behavior under this version of Python. (cf. Section 3.4.1.4, “Known
Issues”) . The execution script determines how the tool is called and is given in either cmd or sh,
depending on whether the tool is executed on Windows or Linux.

During integration, you can specify tool properties. These can be used to, e.g., switch between different
execution modes of a tool, such as fast or precise computation. While the use of properties allows
the eventual user of the component a great amount of flexibility, they also easily lead to inadvertent
security issues. Consider, e.g., a tool that copies some data to a configurable directory and removes that
directory after its computation as part of cleanup. Malicious users may set the configuration directory
to C:\Windows and cause the tool to remove vital system directories on termination. To prevent
users from creating such security issues by accident, RCE does not allow the use of property values
containing \", ASCII-characters in the range 0x00-0x1f, \\, /, *, \?, or %.

If you would like to allow your users to supply a configuration file or a configuration directory, please
add this file as an explicit input to the component. Other options include, e.g., fixing a "whitelist" of
safe configuration options and allowing the user a choice of these configuration options via properties.

3.4.1.1. Directory Structure for Integrated Tools

When executing an integrated tool, a certain directory structure is created in the chosen working
directory. This structure depends on the options you have chosen in the integration wizard. The two
options that matter are "Use a new working directory each run" and "Tool copying behavior".

Usage

32

Root Working Directory: This is the directory you choose in the "Tool Integration Wizard" as
"Working Directory" on the "Launch Settings" page.

Config Directory: In this directory, the configuration file that may be created by the tool integration
will be created by default. The configuration files can be created from the properties that are defined
for the tool on the "Tool Properties" page.

Input Directory: All inputs of type "File" and "Directory" will be copied here. They will have a
subdirectory that has the same name as the name of the input (e.g. the input "x" of type "File" will
be put into "Input Directory/x/filename").

Output Directory: All outputs of type "File" and "Directory" can be written into this directory. After
that, you can use the placeholder for this directory to assign these outputs to RCE outputs in the post
execution script. To write, e.g., the output directory into an output "x" of type "Directory" the following
line in the post execution script would be required: ${out:x} = "${dir:output}"

Tool Directory: This is the directory where the actual tool is located. If the tool should not be copied,
it will be exactly the same directory that you choose, otherwise it will be the same as the chosen
directory but copied to the working directory.

Working Directory: A working directory is always the location, where all the other directories will
be created. If the option "Use a new working directory on each run" is disabled, this will always be
the same as the "Root Working Directory". Otherwise, a new directory is created each run (the name
will be the run number) and is the working directory for the run.

3.4.1.2. Copying of Integrated Tools

When a component is created in the integration wizard, a configuration file is created.

All configuration files from the tool integration are stored in the directory <profile folder>/
integration/tools/

In this directory, there is a separation between different kinds of integration realized through one
subdirectory for each. The common folder always exists.

In these subdirectories, the integrated tools are stored, again separated through into a subdirectory for
each. The name of the directory is the name of integration of the tool.

If an integrated tool is copied to another RCE instance or another machine, the directory of the tool
must be copied, containing a configuration.json and some optional files. It must be put in the
equivalent integration type directory of the target RCE instance. After that, RCE automatically reads
the new folder and if everything is valid, the tool will be integrated right away.

Note

If you want to delete a tool folder that contains some documentation, this can cause an error. If you have this
problem, first empty the documentation folder and delete the empty folder the documentation folder at first (it must
be empty), afterwards you can delete the tool folder.

Tool Execution Return Codes

The tools are executed by using a command line call on the operating system via the execution script.
When the tool finished executing (with or without error), its exit code is handed back to the execution
script and can be analyzed in this script. If in the script nothing else is done, the exit code is handed
back to RCE. When there is an exit code that is not "0", RCE assumes that the tool crashed and thus
lets the component crash without executing the post script. Using the option "Exit codes other than 0
is not an error" prevents the component from crashing immediately. With this option enabled, the post
script wil be executed in any way and the exit code from the tool execution can be read by using the
placeholder from Additional Properties. In this case, the post script can run any post processing and

Usage

33

either not fail the component, so the workflow runs as normal, or let the component crash after some
debugging information was written using the Script API RCE.fail("reason").

3.4.1.3. Integration of CPACS Tools

Additional concepts of CPACS Tool Integration

Extending the common Tool Integration concept, the CPACS Tool Integration has some additional
features.

• Parameter Input Mapping (optional): Substitutes single values in the incoming CPACS content,
based on an XPath configured at workflow design time as a dynamic input of the component

• Input Mapping: Generates the tool input XML file as a subset of the incoming CPACS file XML
structure, specified by a mapping file

• Tool Specific Input Mapping (optional): Adds tool specific data to the tool input file, based on a
mapping file and a data XML file

• Output Mapping: Merges the content of the tool output XML file into the origin incoming CPACS
file, based on a mapping file

• Parameter Output Mapping (optional): Generates output values as single values of the CPACS result
file, based on an XPath configured at workflow design time as a dynamic output of the component

• Execution option to only run on changed input: If enabled, the integrated tool will only run on
changed input. Therefore the content of the generated tool input file is compared to the last runs
content. Additionally the data of the static input channels are compared to the previous ones.

All the features listed above can be configured in the tool integration wizard on the dedicated CPACS
Tool Properties page.

The mappings can be specified by XML or XSLT as shown in the following examples. RCE
differentiates between these methods in accordance to the corresponding file extension (.xml or .xsl).

For XML mapping, the following mapping modes are supported (see the mapping mode definitions
in the mapping examples below):

• append: Elements in the target path that have no equivalent in the source path are retained and are not
deleted. Otherwise the elements in the target path are replaced by the corresponding elements in the
source path. Two elements in the source and target path are considered to be the same if they have
the same element name, the same number of attributes and the same attributes with the same values.

• delete: Before copying, all elements that are described by the target path are deleted in the target
XML file. This is also the standard behavior if no mapping mode is explicitly set in a mapping rule.

• delete-only: All elements that are described by the target path are deleted in the target XML file.

If a target element described by the target path is not available in the XML file, it is created including
all of its parent elements.

Example for an input or tool specific XML mapping :

<?xml version="1.0" encoding="UTF-8"?>
<map:mappings xmlns:map="http://www.rcenvironment.de/2015/mapping" xmlns:xsl="http://www.w3.org/1999/
XSL/Transform">

 <map:mapping mode="append">
 <map:source>/path/to/your/element</map:source>
 <map:target>/toolInput/data/var1</map:target>
 </map:mapping>

Usage

34

 <map:mapping mode="delete">
 <map:source>/path/to/your/element</map:source>
 <map:target>/toolInput/data/var2</map:target>
 </map:mapping>

 <map:mapping mode="delete-only">
 <map:target>/toolInput/data/var3</map:target>
 </map:mapping>

 <map:mapping>
 <map:source>/path/to/your/element</map:source>
 <map:target>/toolInput/data/var4</map:target>
 </map:mapping>

 <xsl:for-each select="$sourceFile/result/cases/case">
 <map:mapping mode="delete">
 <map:source>/path/to/your/case[<xsl:value-of select="position()" />]/element</map:source>
 <map:target>/toolInput/data/condition[<xsl:value-of select="position()" />]/var</
map:target>
 </map:mapping>
 </xsl:for-each>

</map:mappings>

Input or tool specific XSLT mapping:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="cpacs_schema.xsd">
 <xsl:output method="xml" media-type="text/xml" />
 <xsl:template match="/">
 <toolInput>
 <data>
 <var1>
 <xsl:value-of select="/path/to/your/element" />
 </var1>
 </data>
 </toolInput>
 </xsl:template>
</xsl:stylesheet>

Example of an output XML mapping:

<?xml version="1.0" encoding="UTF-8"?>
<map:mappings xmlns:map="http://www.rcenvironment.de/2015/mapping" xmlns:xsl="http://www.w3.org/1999/
XSL/Transform">

 <map:mapping>
 <map:source>/toolOutput/data/result1</map:source>
 <map:target>/path/to/your/result/element</map:target>
 </map:mapping>

</map:mappings>

And output XSLT mapping:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" exclude-result-prefixes="xsi">
 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>
 <!--Define Variable for toolOutput.xml-->
 <xsl:variable name="toolOutputFile" select="'./ToolOutput/toolOutput.xml'"/>
 <!--Copy complete source file to result file -->
 <xsl:template match="@* | node()">
 <xsl:copy>
 <xsl:apply-templates select="@* | node()"/>
 </xsl:copy>
 </xsl:template>
 <!--Modify a value of an existing node-->
 <xsl:template match="/path/to/your/result">
 <element>
 <xsl:value-of select="document($toolOutputFile)/toolOutput/data/result1"/>
 </element>
 </xsl:template>
</xsl:stylesheet>

Please ensure to use the proper namespace for map (xmlns:map="http://www.rcenvironment.de/2015/
mapping") in XML mapping files and the proper namespace for xsl (xmlns:xsl="http://
www.w3.org/1999/XSL/Transform") in both types of mapping files.

The figure below illustrates how the additional features are used in the run process of an user-integrated
CPACS tool.

Usage

35

Figure 3.6. Run process of an user-integrated CPACS Tool

Integrate a CPACS Tool into a Client Instance

1. Start RCE as Client

2. Open the Tool Integration Wizard by clicking the Integrate Tool... in the File menu.

Usage

36

Note

You will always find further help by clicking the ? on the bottom left corner on each page of the wizard or
by pressing F1.

3. Choose the option Create a new tool configuration from a template.

Note

The CPACS templates delivered with RCE are designed to match the conventions of the old CPACS tool
wrapper (respectively ModelCenter tool wrapper). Most of the properties are preconfigured and do not need
to be changed.

4. Select one of the CPACS templates.
Click Next.

5. Fill in the Tool Description page.
Click Next.

6. On the Inputs and Outputs page you will find preconfigured static in- and outputs, that will match
the old tool wrapper conventions. If your tool needs additional in- or outputs, feel free to configure.
Click Next.

7. Skip the page Tool Properties by clicking Next since it is not relevant for tools that match the
conventions of the old CPACS tool wrapper.

8. Add a launch setting for the tool by clicking the Add button on the Launch Settings page. Configure
the path of the CPACS tool and fill in a version, click OK. If you would like to allow users of
your tool to choose that the temp directory won’t be deleted at all after workflow execution, check
the property Never delete working directory(ies). Not to delete the working directory can be very
useful for users for debugging purposes, at least if they have access to the server’s file system.
But this option can result in disc space issues as the amount required grows continuously with
each workflow execution. It is recommended to check that option during integrating the tool and
uncheck it before publishing the tool.
Click Next.

9. The CPACS Tool Properties are preconfigured to match the folder structure defined for the old
CPACS tool wrapper. In most cases you do not have to change this configuration. If you are using
XSLT mapping, please select the corresponding mapping files. If your tool does not work with
static tool specific input, please deselect this property.
Click Next.

10.In the Execution command(s) tab on the Execution page, you need to define your execution
command itself as well as optional pre and post commands. Commands will be processed
sequentially line by line. An example for a typical Windows command including pre and post
commands will look like the following:

rem pre-command
pre.bat

rem tool-execution
YourTool.exe ToolInput/toolInput.xml ToolOutput/toolOutput.xml

rem post-command
post.bat

11.Click Save and activate and your tool will appear immediately in the palette and is be ready to use.

12.If not already done, do not forget to publish your tool (cf. Section 3.6, “Tool publishing and
authorization”) after testing it locally. To check if your tool is successfully published to the
RCE network open the tab Network View at the bottom and checkout Published Components after
expanding the entry of your RCE instance.

Usage

37

Integrate a CPACS Tool into a Server Instance in Headless Mode

The way to integrate a CPACS tool on a server running RCE in headless mode is as follows: Perform
the steps to integrate a CPACS tool on a client instance and make sure that the path of the CPACS tool
configured on the Launch Settings page (step 8) matches the absolute tool path on your server system.
Afterwards, you will find the configuration files inside your rce profile folder at the following location:

/integration/tools/cpacs/[YourToolName]

Copy the folder [YourToolName] to the same location inside the profile folder running with
your headless server instance. Use the "auth" commands (cf. Section 3.6, “Tool publishing and
authorization”) to publish your tool. If the server instance is already running, your tool will be
available immediately after publishing.

3.4.1.4. Known Issues

As noted above, pre- and postscripts are executed using a Java implementation of Python 2. One
particular caveat is Python 2's handling of unicode strings, which requires prefixing strings containing
non-ASCII-characters with u. Please refer to, e.g., this tutorial [https://python.readthedocs.io/en/
v2.7.2/howto/unicode.html] on handling unicode in Python 2 for further information.

Under Windows, the execution script is eventually handed to the Java method Runtime#eval. This
method in turn relies on internal Windows APIs which have known issues with handling unicode.
Please make sure that your execution script works as expected when executed via RCE with unicode
strings.

3.4.2. Integrating Workflows as Components
(Experimental)

In this section we describe how to integrate a workflow containing multiple components as a
component itself. This feature is currently experimental and not recommended for productive use.

Consider a disciplinary tool that computes the value of some function f_c(x) for some parameter c
and some input value x and assume that the user has already integrated this tool as the component
DiscComp. Furthermore assume that in multiple workflows the user would like to fix some value for
c and find a minimum of f_c. She implements this use case via the structure shown in the following
figure.

Figure 3.7. Workflow for determining the optimal input for the function
f_c(x).

https://python.readthedocs.io/en/v2.7.2/howto/unicode.html
https://python.readthedocs.io/en/v2.7.2/howto/unicode.html
https://python.readthedocs.io/en/v2.7.2/howto/unicode.html

Usage

38

In that workflow, the user opted to provide the parameter c via an input provider, while she used an
optimizer to determine the optimal value of x. That optimal value is then written via an output writer.
The user now wants to use this workflow as part of other, more complex workflows.

One approach would be to simply copy the part of the workflow that implements the actual
computation (i.e., the components Optimizer and DiscComp) and paste it whenever it needs this
functionality in other workflows. This approach, however, is neither scalable nor maintainable: While
this example requires only copying of two componentes, one can easily imagine situations in which the
functionality to be copied is implemented via dozens of components, which leads to severe cluttering
of the workflows in which the functionality is used. Furthermore, if the user changes the original
workflow, e.g., if she uses another algorithm for the optimization, she would have to re-copy the
changed parts to all workflows that use the original parts.

Instead of manually copying and pasting, the user may instead opt to integrate the workflow shown
in the above figure as a tool to be used in other workflows. This allows her to hide the details of the
implementation (i.e., the use of an optimizer and of DiscComp) from users of her component and
to easily update that implementation.

In the following, we first show how to integrate an existing workflow as a component before detailing
the technical backgrounds of executing a workflow as a component. Finally, we discuss caveats and
common questions about this feature. In all these sections, we will refer to an "inner" workflow and an
"outer" workflow. These refer to the workflow that is integrated as a component and to the workflow
in which that component is used later on, respectively.

3.4.2.1. Integrating a Workflow via command console

Before integrating the workflow shown above, we assume that you have already constructed a
workflow that implements the behavior that you want to provide to other users as a component.
Moreover, we assume that this workflow contains some input providers that feed initial data into the
workflow and some output writers that persist the results of the computation implemented by the
workflow. In the figure above, these input providers and output writers are situated to the left of the
component DiscComp and to the right of the optimizer, respectively. Finally, the workflow to be
integrated must not contain any placeholders (cf. ???). Otherwise user input would be required at
execution time in order to assign values, which would prevent automated execution of the integrated
workflow.

Note

You can easily determine whether your workflow contains placeholders by opening the workflow execution wizard
(either via the green arrow in the upper bar in the GUI or via the shortcut Ctrl + Shift + X). If there exist any
placeholders that are to be assigned values before the start of the execution, the wizard will show a second page
that displays all such placeholders. If no such page exists, the workflow does not contain placeholders and is ready
for integration as a component.

Integrating a workflow consists of nothing more than determining endpoints of components in the
inner workflow that will be exposed to the outer workflow by the resulting component. In this case,
we opt to expose the input c of DiscComp as well as the output x_output of Optimizer. In
general, inputs will be exposed as inputs on the component in the outer workflow, while outputs will
be exposed as outputs. It is not possible to expose an input of a component in the inner workflow as
an output to the outer workflow, or vice versa.

In order to integrate the above workflow as a component, we first remove the input providers and
output collectors that handle the inputs and outputs that are to be passed into the inner workflow by
the outer workflow. In the example above, we simply deactivate the two components (e.g. via the
keyboard shortcut Ctrl + D) and obtain the workflow shown in the following figure.

Usage

39

Figure 3.8. Workflow from the above figure prepared for integration as a
component.

While previously, all endpoints of all components were connected, now there exist two unconnected
endpoints: The input c of DiscComp as well as the output x_optimal of Optimizer. The
workflow is now ready for integration as a component.

Integration of workflows is performed via the command console and, in particular, via the command
wf integrate. This command has the following general form:

wf integrate [-v] <component name> <absolute path to .wf file> [<exposed endpoint definition>...]

The optional argument -v enables verbose mode. If this parameter is set, the command outputs detailed
information about the endpoints that are exposed to the calling workflows. This does not change the
behavior of the command.

The parameter component name determines the name of the component that is integrated, i.e.,
the name that will appear in the pallet and in the workflow editor. Since in our example the purpose
of the new component in our example is to determine some optimal parameter x, we opt to call the
component FindOptimalX.

The parameter absolute path to .wf file is self-explanatory and denotes the path on your
local file system where the workflow file describing the workflow to be integrated is located. In our
example we assume that the workflow file is located at C:\Users\user\workflow.wf.

Note

Recall that you can obtain the absolute path to any workflow file in the project explorer via a right click on the
workflow and selecting Copy Full Path.

Furthermore, recall that parameters in the command console are separated by spaces unless the parameter is
surrounded by quotation marks . Hence, if the path to your workflow contains spaces, enclose it in quotation marks.
Finally, recall that backslashes must be escaped, i.e., the path C:\My Folder would have to be entered as "C:
\\My Folder".

Each succeeding parameter is interpreted as the definition of an exposed endpoint. Each such definition
is of the following form:

--expose <component name>:<internal endpoint name>:<exposed endpoint name>

Here, component name refers to the name of the component in the inner workflow whose endpoint
is to be exposed. The parameter internal endpoint name denotes the name of the endpoint of
the component that is to be exposed, while the parameter exposed endpoint name determines
the name of the endpoint on the resulting component. Make sure that each exposed endpoint
name is unique within the context of the resulting component, as the behavior of a component with
multiple inputs or outputs of the same name is undefined.

Usage

40

Note

Instead of the names of the component and the endpoints that are displayed in the workflow editor, you may instead
use the internal identifiers of these nodes and endpoints, respectively. These are not currently shown in the GUI
of RCE but can, e.g., be determined by inspecting the workflow file via some text editor. While this should not be
necessary when integrating workflows manually, it may prove useful when automating the creation and integration
of workflows.

Recall that you do not need to specify whether the endpoint is exposed as an input or as an output, but
that the underlying endpoint determines the configuration of the endpoint on the resulting component:
Inputs are only ever exposed as inputs, whereas outputs are only ever exposed as outputs. This principle
extends to the configuration of inputs: If the endpoint on the component in the inner workflow is, e.g.,
configured be required for component execution and to only expect a constant value, then the endpoint
on the resulting component is configured analogously.

Furthermore recall that we want to expose the input c of DiscComp as well as the output x_output
of Optimizer. We want the former input to retain its original name, while we want to expose the
latter input as optimalX. In order to integrate the example workflow prepared above as a component,
we thus issue the following command:

wf integrate FindOptimalX "C:\Users\user\workflow.wf"--expose DiscComp:c:c --expose
 Optimizer:x_optimal:optimalX

When enabling verbose mode via the switch -v, RCE writes the following output

Input Adapter : c --[Float,Constant,Required]-> c @ 03b5b758-3b44-4a53-b832-be9991321285
Output Adapter: x_optimal @ 402cac5e-2206-48cc-a62f-803bd320a15a --[Float]-> x_opt

where 03b5b758-3b44-4a53-b832-be9991321285 and 402cac5e-2206-48cc-
a62f-803bd320a15a denote the IDs of the component DiscComp and of Optimizer,
respectively.

Once the execution of the command has finished, a new component named FindOptimalX with
a single input named c and a single output named optimalX will be available for use in all other
workflows.

3.4.2.2. Workflow Integration Editor

With RCE 10.4 we provide the Workflow Integration Editor to support the workflow integration via
the graphical user interface of RCE. There are two options to open the editor:

• Select the workflow you want to integrate as a component from the Project Explorer and go to either
the main menu Intgration > Integrate Workflow File or use the quick acess via the icon bar.

• Select a (sub-)workflow in the Workflow Editor and choose from the context menu Integrate
selected Components as Component

Required fields are marked with an asterisk (*). Press Integrate Workflow to integrate the workflow
as a component. The component will automatically show up in the Workflow Editor palette.

Note

The workflow integration editor has a dynamic help, which is shown by clicking on the question mark on the
bottom left or by pressing F1. It will guide you through the tabs of the workflow integration editor.

To edit an already integrated workflow component use the Intgration > Edit Workflow Integration
from the main menu or use the context menu in either the Workflow Editor or the Palette after selecting
the desired workflow component.

Usage

41

Figure 3.9. Workflow Integration Editor

One major part of the workflow integration consists of the input/output mapping. On the Mapping
tab all unconnected endpoints of your selected (sub-)workflow are displayed. Here you can select
endpoints to serve as inputs and outputs for the integrated workflow component.

Note

Inputs with the constraint Required are mandatory.

You can assign custom names for your endpoints by editing the Mapped Name cell in the table.

Figure 3.10. Mapping Page

3.4.2.3. Technical Details of Executing an Integrated Workflow

In this section some technical details are given for interested users how exactely an integrated
workflow used as a workflow component in another workflow is executed. If you are interested in
more conceptual details or encounter problems while running an integrated workflow, this section
may be helpful.

Usage

42

Recall that each workflow that RCE executes is controlled by some particular instance, i.e., by the
workflow controller. Since executing an integrated workflow executes the underlying workflow, RCE
requires a workflow controller for doing so. That workflow controller may or may not be the same as
the one executing the outer workflow. Currently, the instance publishing the component serves as the
workflow controller for the execution of the inner workflow. We call it the "inner workflow controller"
to distinguish it from the workflow controller that runs the outer workflow. This "inner workflow
controller" runs a copy of the workflow in the exact state in which it was integrated, i.e., changes made
to the workflow after integration will have no effect on the behavior of the integrated component.

Futhermore, since the publishing instance serves as "inner workflow controller" for the execution of
the integrated workflow, the execution of the integrated workflow will show up in the Workflow Data
Browser of the publishing instance under the name <workflow component name> running
as component '<component name>' of workflow '<outer workflow>'. The
<workflow component name> denotes the name as which the publishing instance published the
integrated workflow, <component name> denotes the name under which the workflow component
is used in the outer workflow, and <outer workflow> denotes the name under which the outer
workflow is stored in the Workflow Data Browser of its workflow controller.

Note

Nesting workflows, i.e., integrating workflows as components that already contain workflows integrated as
components, can easily lead to unreadable names of workflow executions that are stored in the Workflow Data
Browser. This may significantly inhibit manual inspection of the resulting data. Keep this in mind when designing
workflows.

Technically, before starting the integrated workflow, the instance controlling the inner workflow
injects two additional components into the workflow, one so-called input adapter and one so-called
output adapter. These components are not accessible by the user when constructing workflows. They
are only used to transport data from the inputs of the workflow component to the exposed inputs as
well as data from the exposed outputs to the outputs of the workflow component, respectively.

Upon execution of the integrated component in the outer workflow, the instance publishing the
component first injects the input and the output adapter as described above. It subsequently executes
the workflow and collects the results via the output adapter.

3.4.2.4. Limitations, Caveats, and FAQ

Since the integration of workflows as components is currently under development and only released
as a beta feature, there are some caveats and known issues that you should be aware of. We have
alluded to these limitations and caveats throughout this section, but briefly list them here again for
the sake of readability.

• Workflow files are "frozen" at integration time. Changes to an integrated workflow file after
integration do not change the behavior of the component. If you want to apply changes to the
workflow file to the component, you will have to re-integrate the workflow.

• Currently, no placeholder files (cf. ???) are supported, i.e., the integrated workflow must contain
no placeholders. Moreover, the workflow is not checked for containing placeholders at integration
time, but instead the execution of the the component will fail at execution time.

• Via the command console, the user cannot specify a version of the integrated component. If there
is demand, we will add the command line switch --version in order to allow the user to have
multiple versions of the same workflow integrated simultaneously. Also, the user can currently not
specify an individual icon to be used for the integrated component. This may also be added in future
versions.

• If some adapted output is written to multiple times during a single run of the integrated workflow,
only the final values written to that output are forwarded to the outer workflow.

Usage

43

• Due to this new implementation, there is doubled functionality between the command wf
integrate and the command ra-admin wf-publish. After the full release of the integration
of workflows as component, the latter command will be deprecated and its output replaced by a
message asking the user to use wf integrate instead.

• If the underlying workflow is paused during execution, this pause state is not reflected in the
calling workflow. Instead the component is shown as running. Similarly, if the integrated workflow
includes some result verification and the results are rejected, the component simply fails instead of
indicating the rejection of results.

• Component names passed to the command wf integrate are not checked to satisfy the rules on
component names. This will be fixed before release and integration of a component with an invalid
name will be refused with an informative error message.

Furthermore, there are some common questions that may occur in the context of integrating a workflow
as a component. We collect and answer these questions here again for the sake of readability.

Where is the integration folder of
my new component?

The integration of a workflow as a component is stored in a
profile in the folder integration\tools\workflow.

Can I move the folder containing
the integration of a workflow to
other instances, similarly to the
integration of common tools?

Yes, this is possible, since the integration folder contains a copy
of the workflow file which was produced at integration time.
Also, you can publish integrated workflows to other instances
just as you can publish common tools.

What happens if an integrated
workflow uses some remote
components that are not available?

In that case the component is still available as long as the
instance publishing it is available. The availability of the
components contained in the integrated workflow is only
checked at execution time. If a component is unavailable at that
time, the execution of the component fails.

3.5. Connecting RCE instances
Since RCE 10, RCE provides three possibilities to connect your RCE instance to other RCE instances
and to use the user-integrated tools and components published on those instances: The RCE network
connections, SSH Uplink connections and SSH Remote Access connections. RCE connections are
meant to be used only in a trusted network (e.g. your institution's internal network). The RCE network
traffic is currently not encrypted . This means that it is not secure to expose RCE server ports to
untrusted networks like the internet. In the case that it is not possible or not secure to use RCE
connections, SSH connections provide a more secure alternative.

As the new Uplink connections do not yet support all features of the former SSH connections (the
publishing of workflows is not possible by Uplink connections), we decided to keep both types of
connections in the current release. Thus, in the network view there are now 3 types of connections:
the standard RCE connections (meant to be used in secure internal networks), the old "SSH Remote
Access Connections" and the new "Uplink Connections".

The following table compares the three connection types:

Table 3.11. Connection types - feature matrix

Connection type RCE connections
("internal
network")

SSH Remote
Access
connections

SSH Uplink
connections

Publishing built-in tools (e.g. Joiner,
Parametric Study, ...)

yes no no

Usage

44

Connection type RCE connections
("internal
network")

SSH Remote
Access
connections

SSH Uplink
connections

Publishing user-integrated tools yes yes yes

Publishing workflows as tools no * yes no *

Symmetric/bidirectional tool
publishing

yes no yes

Accessing remote workflow status and
data management

yes no no

Remote system monitoring (CPU/
RAM)

yes yes no **

Login authorization (via password or
SSH keyfile)

no yes yes

Suitable for insecure networks (e.g.
internet)

no (!) partially *** yes (via relay)

* = planned for RCE 11; ** = may be added in a future release; *** = connections are encrypted,
but require an open incoming network port for publishing tools - if possible, use Uplink connections
instead

3.5.1. RCE Network Connections
RCE connections are meant to be used only in a trusted network (e.g. your institution's internal
network). To build up a network of RCE instances, at least one of the instances has to be configured as
a server (see the "Configuration" section or the sample configuration file "Relay server" for details).

On the client side, RCE network connections can be added in the "network" view by clicking "Add
network connection" and entering the hostname and port of an RCE server instance. The connections
are shown in the "RCE Network"->"Connections" subtree. They can also be edited, connected and
disconnected in the network view. However, the changes made here are not saved in the configuration
yet, i.e. they will be lost when RCE is closed or restarted. To permanently add connections, you can
edit the configuration file (see the "Configuration" section for details).

In the "RCE Network" -> "Instances" subtree all RCE instances in the network are listed. When
expanding the entry for an instance, you can see monitoring data like CPU or RAM usage for this
instance, and the published components and tools of this instance (if it has any).

The published components and tools of the other instances in your network are also shown in the
palette of the Workflow Editor. From there, you can use them in your workflows just like your local
components and tools. When you start a workflow, in the "Execute Workflow" wizard there is an
overview which component will be run on which RCE instance. If a component is available on several
instances, you can choose here on which instance it should be run. In the same wizard, you can also
choose another instance as the "Controller Target Instance", which means that the workflow execution
will be controlled by this instance (see the section "Configuration Parameters" for more information).
This can be useful when you start a long-running workflow where all components are run on remote
instances and you do not want to keep your local computer connected all the time.

3.5.2. Uplink Connections
Uplink connections allow to use the "SSH relay" functionality. This means that it is possible to setup
a single server as the "relay" for a project (and only this server needs to be reachable on an SSH
port). All other RCE instances can connect to this server as clients via SSH Uplink Connections and

Usage

45

publish their tools so that they can be used by other clients. (In contrast, with the former version of
SSH connections every partner who wanted to publish tools needed to configure an SSH server).

3.5.2.1. Configuring an RCE instance as an Uplink relay

The RCE instance that should be used as the relay has to be configured as an SSH server and
provide at least one account with the role "uplink_client" or "remote_access_user"(see Section 2.2,
“Configuration and Profiles” or the sample configuration file "Uplink relay" for details). The
recommended role is "uplink_client", which allows only access to Uplink connections and no access
to an interactive SSH shell.

Note

In RCE 10, only RSA keys are supported when configuring an SSH account using a key file. A private key has
to be in PEM format starting with -----BEGIN RSA PRIVATE KEY----- or in the proprietary OpenSSH
format, which starts with -----BEGIN OPENSSH PRIVATE KEY-----.

We recommend a key length of at least 3000 bits. When using Windows, we recommend puttygen for key
generation, which comes bundled together with the popular SSH client putty. When using Linux, we recommend
ssh-keygen, which is part of the SSH tools by OpenSSH. Please refer to the documentation of your system for
instructions on installing the required tools.

3.5.2.2. Configuring an RCE instance as an Uplink client or
gateway (in GUI mode)

On the client side, Uplink connections can be added in the "network" view by clicking "Add Uplink
Connection". In the following dialog, enter the hostname and port of an Uplink relay as well as the user
name and the authentication data of an SSH account configured on this instance. Depending on the
SSH account, you have to authenticate using a passphrase or by an RSA private key file. If your private
key is protected by a passphrase, select the authentication type "Keyfile with passphrase protection",
else select "Keyfile without passphrase protection". If several clients are using the same account on
a relay, enter a different "client ID" on each of them.

If the instance should serve as a gateway (i.e. forward tools between the (external) Uplink network
and a local network), set the "isGateway" parameter to "true".

The connections are shown in the "Uplink"->"Uplink Connections" subtree. They can also be edited,
connected and disconnected in the "network" view. It is possible to store passphrases using the Eclipse
Secure Storage Mechanism. However, the changes made here are not saved in the configuration yet, i.e.
they will be lost when RCE is closed or restarted. To permanently add Uplink connections, you can edit
the configuration file (see Section 2.2, “Configuration and Profiles” for details). Sample configuration
files are avaible as "Uplink Client" and "Uplink Gateway".

3.5.2.3. Configuring an Uplink Gateway in non-GUI mode

Configuring a gateway in non-GUI mode involves four steps:

• Configure an SSH Uplink connection to the SSH relay server in the profile's
configuration.json file. In this connection, make sure to set the "isGateway" parameter
to "true" (without quotes).

• Configure a normal RCE server port for the internal network. This is the network port that clients
in the local (internal) network can connect to with standard ("internal network") connections.

• Using the file-based import feature (see section Section 2.2.5, “Importing authorization data without
GUI access”), import the SSH password or the SSH keyfile passphrase for logging into the Uplink
relay. (Please note that currently, the gateway must be (re)started after creating these import files
to apply the changes.)

Usage

46

• To allow the gateway to forward tools that are not public, but only published for specific
authorization groups, the gateway must be a member of at least one matching group. Use the file-
based import feature (see section Section 2.2.5, “Importing authorization data without GUI access”)
to import any required group keys. (Please note that currently, the gateway must be (re)started after
creating these import files to apply the changes.)

3.5.2.4. Tool publishing

In order to make tools available for other clients, you have to publish them (for example using the
"Component Publishing" view; see user guide for more information about pubishing/authorization
groups). To make a tool available via an SSH relay, it has to be either in the "Public Access" group
or in an authorization group which name starts with "external_". Tools in other authorization groups
will only be shared in your local RCE network.

Note

Note: Tools that are available to a client via an Uplink connection are also available to RCE instances connected to
that client in its local RCE network (if they possess the corresponding authorization group key and the "isGateway"
option is set for the Uplink connection). Accordingly, tools published by those instances in the "Public Access"
group or in an authorization group which name starts with "external_" will also be made available via the Uplink
relay. Please not that this only works if the gateway itself also possesses the authorization group key.

3.5.2.5. Possibly surprising behavior (or non-behavior)

Nodes connected via Uplink connections do not show up in the network view as nodes (same as
Remote Access).

Imported tools show up in the Network view under the Node running the Uplink connection (also the
same as Remote Access), and they are not yet marked or distinguishable from normal components.

Tools located on the RCE instance serving as relay are not published automatically. If you want to
publish them, you have to add a connection to the relay from the same instance.

3.5.2.6. Known issues/limitations of the current release

Uplink connections are an experimental feature in RCE 10.x and have some known limitations:

• Connections are always encrypted as part of the SSH connection, but there is no additional "internal"
encryption of tool input/output data yet (which is planned for future versions to protect users against
untrustworthy relay servers).

• The behavior on errors, disconnects, and server shutdowns is not fully implemented yet; this will
be stabilized in RCE 11.

• Custom tool icons are not yet transferred over Uplink connections.

3.5.3. Example of a Cross-Organization Network

The following figure gives an example of how a cross-organization network using Uplink connections
could be structured:

Usage

47

Figure 3.11. Example RCE network

The four project partners in the example all have an internal network of RCE instances which are
connected by standard RCE connections. Uplink connections to a relay server are used to connect
between the different partners. The relay server is located outside of the organizations networks, and
only the relay server has to be reachable via SSH over the internet. Typically, for each organization
one RCE instance (called SSH gateway) established an SSH connections to this relay server. All other
instances in the institution’s internal network can be connected to it by standard RCE connections and
still publish tools to the other partners/ access tools published by other partners.

Each institution in the example has a different internal setup, all of which are possible:

• Partner A has a dedicated RCE server where the published tools are located, which is connected to
the SSH gateway by an RCE connection. All other RCE users in the internal network are connected
to this server.

• Partner B has put all the tools directly on the SSH gateway instance.

• In Partner C's network, some tools are located on the SSH gateway, but some tools are also published
by users directly on their own machines. As long as they are connected to the SSH gateway also
those tools can be published to the other partners.

• Partner D has no tool server, instead the users’ computers connect directly to the relay server.

3.5.4. SSH Remote Access Connections
Note

Since RCE 10, the recommended connection type for secure connections are the SSH Uplink connections (cf.
previous chapters). However, as the new Uplink connections do not yet support all features of the SSH Remote
Access Connections (e.g. access to monitoring data is not possible by Uplink connections), the current release
provides both types of connections. This chapter describe the usage of the SSH Remote Access Connections.

SSH connections provide a more secure alternative to the standard RCE connections and can be used
to access tools remotely. The published tools are shown in the palette of the client's Workflow Editor

Usage

48

(this may take a few seconds after connecting, as the tool list is fetched from the remote hosts every
few seconds). From there, you can use them in your workflows just like your local components and
tools. Differently from tools accessed by RCE network connections, in this case the component is
shown to be executed on your local instance in the Workflow Execution wizard.

Also workflows that were published on the remote instance (for information about the publishing see
section "Remote Tool and Workflow Access") are shown as components in the palette of the client's
Workflow Editor in the group "SSH Remote Access Workflows" (if the client runs RCE 7.1 or newer).
These remote workflows can be added to workflows and executed like local components/tools.

3.5.4.1. Configuring an RCE instance as an SSH server

The RCE instance that publishes the tool, or another instance connected to it by RCE network
connections, has to be configured as an RCE remote access server (see the "Configuration" section or
the sample configuration file "Remote access server" for details).

Note

In RCE 10, only RSA keys are supported when configuring an SSH account using a key file. A private key has
to be in PEM format starting with -----BEGIN RSA PRIVATE KEY----- or in the proprietary OpenSSH
format, which starts with -----BEGIN OPENSSH PRIVATE KEY-----.

We recommend a key length of at least 3000 bits. When using Windows, we recommend puttygen for key
generation, which comes bundled together with the popular SSH client putty. When using Linux, we recommend
ssh-keygen, which is part of the SSH tools by OpenSSH. Please refer to the documentation of your system for
instructions on installing the required tools.

3.5.4.2. Configuring an RCE instance as an SSH client

On the client side, SSH connections can be added in the "network" view by clicking "Add SSH
Remote Access Connection". In the following dialog, enter the hostname and port of an RCE
instance that provides an SSH server as well as the user name and the authentication data of an SSH
account configured on this instance. Depending on the SSH account, you have to authenticate using
a passphrase or by an RSA private key file. If your private key is protected by a passphrase, select
the authentication type "Keyfile with passphrase protection", else select "Keyfile without passphrase
protection".

The connections are shown in the "SSH Remote Access"->"SSH Remote Access Connections"
subtree. They can also be edited, connected and disconnected in the "network" view. It is possible to
store passphrases using the Eclipse Secure Storage Mechanism. However, the changes made here are
not saved in the configuration yet, i.e. they will be lost when RCE is closed or restarted. To permanently
add SSH connections, you can edit the configuration file (see the "Configuration" section for details).

3.6. Tool publishing and authorization
RCE components and integrated tools can be published to make them usable by other connected
("remote") RCE instances. The publishing options for each component/tool can be defined in the
"Component Publishing" view. In this view, each component can be assigned to one of three basic
publication levels:

• Local (the default option): Components with the "local" setting can only be used on the local
instance; they are not visible to other instances.

• Custom: This setting allows to make the component/tool available only to specific groups of users.
To use this setting, one or more authorization groups have to be created first, which is explained
in the next section. Each component/tool can then be assigned to one or multiple groups. Users on
remote instances can see and use components if they are members of at least one of these groups.

Usage

49

• Public: Components with the "public" setting can be used by all connected RCE instances. This is
equivalent to the tool and component publishing in earlier versions of RCE. Tools in the "public"
group are also available over Uplink Connections and Remote Access connections.

Note

If the "Component Publishing" view is not visible, you can open it from the "Window > Show View" menu. If it
is not listed there, choose "Other" and select them from the "RCE" category.

3.6.1. Managing authorization groups
Authorization groups can be created and managed in the "Authorization Groups" dialog, which can
be opened from the "Component Publishing" view. To create a new group, click the "Create Group"-
button and enter a name for the group. To provide access to this group to other users, select the group
in the list and click "Export Group Key". Copy the provided key from the dialog that appears, and
pass it on to the users that you would like to invite to this group.

Note

IMPORTANT: This exported group key is similar to a password. When passing it to other users, make sure to
use a communication medium that unauthorized users cannot easily intercept. For example, passing the key via an
encrypted chat system provided by your employer, or a Team Site that is only accessible to project members, is
usually secure enough. On the other hand, sharing it by email outside of your organization is usually unsafe, and
we recommend using more secure alternatives.

When the other user receives this key, they can import it into their RCE instance by using the "Import
Group Key" button in their "Authorization Groups" dialog. After importing a key on an RCE instance,
all tools published for that group on connected RCE instances are visible and can be used like a "public"
component.

Note

To provide access to tools over Uplink Connections, the tools either have to be "public" or in an authorization
group which name starts with "external_". Tools in other authorization groups are only accessible from the internal
RCE network.

3.6.2. Publishing tools on the command console
Creating custom tool groups and publishing tools is also possible using the "auth" commands on the
command line. A short reference:

• auth create <name> - creates an authorization group

• auth list - lists available access groups

• auth delete <name/id> - deletes an authorization group; if the name is ambiguous (e.g.
there are two groups named "groupName"), you need to add the randomly generated id behind it,
separated with a colon (e.g. groupName:2716ab2d25)

• auth export <name/id> - exports a group key in a form that can be imported by another
instance via GUI or command line

• auth import <exported key> - imports a group key exported via GUI (as described above)
or via the auth export command. The group name is embedded in the exported key, and is
set automatically.

• components set-auth <component id> <permissions> - sets the permissions
for a component. Possible values for "permissions" are either "local", "public", or a comma-
separated list of authorization groups/ids.

Usage

50

• components list-auth - shows a list of all defined authorization settings. These settings are
independent of whether a matching component exists, which means that settings are kept when a
component is removed and later added again.

The component ids used in this commands can be derived as follows:

• rce/<component name> for standard RCE components, e.g. "rce/Parametric Study"

• common/<tool name> for integrated tools of type "common" e.g. "common/ExampleTool"

• cpacs/<tool name> for integrated tools of type "CPACS" e.g. "cpacs/
CPACSExampleTool"

3.7. RCE’s Command Console
RCE features a command console.
This command console is accessible via the command console view in RCE’s desktop mode or via
SSH. Commands consist of one or two tokens e.g. "wf" for one token and "wf run" for two tokens.
A list of all commands is shown in section Section 3.7.1, “Commands”. In addition, some commands
can be provided with parameters. There are three types of parameters. These types and their uses are
explained in section Section 3.7.2, “Parameters”.

3.7.1. Commands
Commands are structured in groups. A command group is defined by the first token of a command.
This means, that commands like "wf run" and "wf verify" are in the same command group. Some
command groups like "mail" consist only of a single command. For each group there is a table
explaining all the related commands.

The 'auth' command

Command Description

auth Alias for "auth list".

auth create <group id> Creates a new authorization group.

<group id>: an identifier consisting of 2-32
letters, numbers, underscores ("_") and/or
brackets

auth delete <group id> Deletes a local authorization group.

<group id>: an identifier consisting of 2-32
letters, numbers, underscores ("_") and/or
brackets

auth export <group id> Exports a group as an invitation string that can
be imported by another node, allowing that other
node to join this group.

<group id>: an identifier consisting of 2-32
letters, numbers, underscores ("_") and/or
brackets

auth import <invitation string> Imports a group from an invitation string that
was previously exported on another node.

Usage

51

Command Description

<invitation string>: imports a group from an
invitation string that was previously exported on
another node

auth list Lists the authorization groups that the local node
belongs too.

The 'cn' command

Command Description

cn Alias for "cn list".

cn add <target> <description> Add a new network connection (Example: cn
add activemq-tcp:rceserver.example.com:20001
"Our RCE Server").

<target>: target of the connection
<description>: description of the connection

cn list Lists all network connections, including ids and
connection states.

cn start <id> Starts/connects a READY or DISCONNECTED
connection (use "cn list" to get the id).

<id>: id of the connection

cn stop <id> Stops/disconnects an ESTABLISHED
connection (use "cn list" to get the id).

<id>: id of the connection

The 'components' command

Command Description

components [--local|-l] [--remote|-r] [--as-table|-
t]

Alias for "components list".

[--local|-l]: only list components provided by
the local node
[--remote|-r]: only list components provided by
the remote node(s)
[--as-table|-t]: format the output as a table that is
especially suited for automated parsing

components list [--local|-l] [--remote|-r] [--as-
table|-t]

Show available components; by default,
components on the local node as well as those
published by a reachable remote node are listed.

[--local|-l]: only list components provided by
the local node
[--remote|-r]: only list components provided by
the remote node(s)
[--as-table|-t]: format the output as a table that is
especially suited for automated parsing

components list-auth Shows a list of all defined authorization settings.
Note that these settings are independent of
whether a matching component exists, which
means that settings are kept when a component
is removed and later added again.

Usage

52

Command Description

components set-auth <component id> <groups…
>

Assigns a list of authorization groups to a
component id; note that authorization settings
always apply to all components with using this
id, regardless of the component’s version.

<component id>: A component’s id as
listed by the "components list" command,
e.g. "rce/Parametric Study", "common/
MyIntegratedTool", or "cpacs/MyCpacsTool".
<groups…>: list of authorization groups

components show <component id> Show component definition.

<component id>: A component’s id as
listed by the "components list" command,
e.g. "rce/Parametric Study", "common/
MyIntegratedTool", or "cpacs/MyCpacsTool".

The 'explain' command

Command Description

explain Show tokens.

The 'help' command

Command Description

help <command group> [--details|-d] [--dev] [--
asciidoc]

List available commands.

<command group>: (optional) the command
group of which the commands should be shown
[--details|-d]: show details of the commands
[--dev]: show dev commands
[--asciidoc]: output in asciidoc format

The 'keytool' command

Command Description

keytool ssh-pw Generates a password for an SSH or Uplink
connection, and the corresponding server entry.

keytool uplink-pw Generates a password for an SSH or Uplink
connection, and the corresponding server entry.

The 'mail' command

Command Description

mail <recipient> <subject> <body> Send an email.

<recipient>: recipient of the e-mail
<subject>: subject of the e-mail
<body>: body of the e-mail

The 'net' command

Command Description

net Alias for 'net info'.

net filter Show IP filter status.

Usage

53

Command Description

net info Show a list of reachable RCE nodes.

net reload-filter Reloads the IP filter configuration.

The 'ra-admin' command

Command Description

ra-admin list-wfs Lists the ids of all published workflows.

ra-admin publish-wf <workflow file>
<workflow id> [-g <group name>] [-p <JSON
placeholder file>] [--keep-data|-k] [--temporary|-
t]

Publishes a workflow file for remote execution
via "ra run-wf" using <id>.

<workflow file>: the file of the workflow
<workflow id>: id of the workflow
[-g <group name>]: set group name
[-p <JSON placeholder file>]: JSON
placeholder file
[--keep-data|-k]: workflow data will not be
deleted
[--temporary|-t]: automatically unpublish when
RCE shuts down

ra-admin unpublish-wf <workflow id> Unpublishes (removes) the workflow file with id
<id> from remote execution.

<workflow id>: id of the workflow

The 'restart' command

Command Description

restart Restart RCE.

The 'saveto' command

Command Description

saveto <output file> <command> Save the command output to a file.

<output file>: file to which the output will be
written
<command>: command whos output will
be saved, does not have to be surounded by
quotation marks

The 'shutdown' command

Command Description

shutdown Shut down RCE.

The 'ssh' command

Command Description

ssh Short form of "ssh list".

ssh add <display name> <host> <port>
<username> <key file location>

Add a new ssh connection.

<display name>: display name for the ssh
connection
<host>: host for the ssh connection
<port>: port for the ssh connection

Usage

54

Command Description

<username>: username for the ssh connection
<key file location>: location of the key file

ssh list Lists all ssh connections, including ids and
connection states.

ssh start <id> Starts/connects an ssh connection (use " ssh list"
to get the id).

<id>: id for the ssh connection

ssh stop <id> Stops/disconnects an ssh connection (use " ssh
list" to get the id).

<id>: id for the ssh connection

The 'stop' command

Command Description

stop Shut down RCE (alias of "shutdown").

The 'sysmon' command

Command Description

sysmon [--local|-l] [--remote|-r] Basic system-monitoring information.

[--local|-l]: prints system monitoring data for the
local instance
[--remote|-r]: fetches system monitoring data
from all reachable nodes in the network, and
prints it in a human-readable format

sysmon api <operation: default|avgcpu+ram>
<time span> <time limit>

Fetches system monitoring data from all
reachable nodes in the network,and prints it in a
parser-friendly format.

<operation: default|avgcpu+ram>: operation to
perform; avgcpu+ram: fetches the average CPU
load over the given time span and the current
free RAM
<time span>: the maximum time span (in
seconds) to aggregate load data over
<time limit>: the maximum time (in
milliseconds) to wait for each node’s load data
response

sysmon remote Fetches system monitoring data from all
reachable nodes in the network, and prints it in a
human-readable format.

The 'uplink' command

Command Description

uplink Short form for "uplink list".

uplink add <display name> <host> <port>
<username> <key file location> <client id> <is
gateway>

Add a new uplink connection.

<display name>: display name
<host>: host ip adress
<port>: port for the ssh connection
<username>: username

Usage

55

Command Description

<key file location>: location of the keyfile
<client id>: id of the client
<is gateway>: controls the isGateway property
of the uplink

uplink list Lists all uplink connections, including ids and
connection states.

uplink start <id> Starts/connects an uplink connection (use "
uplink list" to get the id).

<id>: id of the uplink

uplink stop <id> Stops/disconnects an uplink connection (use "
uplink list" to get the id).

<id>: id of the uplink

The 'version' command

Command Description

version [--detailed|-d] Print version information.

[--detailed|-d]: Show detailed information about
the version

The 'wf' command

Command Description

wf Alias for "wf list".

wf cancel <id> Cancel a running or paused workflow.

<id>: id of the workflow

wf delete <id> Delete and dispose a finished, cancelled or failed
workflow.

<id>: id of the workflow

wf details <id> Show details of a workflow.

<id>: id of the workflow

wf dispose <id> Disposes a finished, cancelled or failed
workflow.

<id>: id of the workflow

wf list Show workflow list.

wf open <id> Open a runtime viewer of a workflow. Requires
GUI.

<id>: id of the workflow

wf pause <id> Pause a running workflow.

<id>: id of the workflow

wf resume <id> Resume a paused workflow.

<id>: id of the workflow

wf run <workflow file> [--delete <onfinished|
never|always>] [--dispose <onfinished|never|

Starts a workflow from the given file and waits
for its completion.

Usage

56

Command Description

always>] [-p <JSON placholder file>] [--
compact-output|-c]

<workflow file>: path to the workflow file
[--delete <onfinished|never|always>]: deletion
behaviour
[--dispose <onfinished|never|always>]: dispose
behaviour
[-p <JSON placholder file>]: JSON placeholder
file
[--compact-output|-c]: This is a command flag

wf start <workflow file> [--delete <onfinished|
never|always>] [--dispose <onfinished|never|
always>] [-p <JSON placholder file>] [--
compact-output|-c]

Starts a workflow from the given file and returns
its workflow id if validation passed.

<workflow file>: path to the workflow file
[--delete <onfinished|never|always>]: deletion
behaviour
[--dispose <onfinished|never|always>]: dispose
behaviour
[-p <JSON placholder file>]: JSON placeholder
file
[--compact-output|-c]: This is a command flag

wf verify <workflows…> [--delete <onfinished|
never|always>] [--dispose <onfinished|never|
always>] [--pr <parallel runs>] [--sr <sequential
runs>] [-p <JSON placholder file>] [--basedir
<base directory>] [--includedirs <include
directory…>]

Batch test the specified workflow files.

<workflows…>: list of workflow files
[--delete <onfinished|never|always>]: deletion
behaviour
[--dispose <onfinished|never|always>]: dispose
behaviour
[--pr <parallel runs>]: number of parallel runs
[--sr <sequential runs>]: number of sequential
runs
[-p <JSON placholder file>]: JSON placeholder
file
[--basedir <base directory>]: optional base
directory
[--includedirs <include directory…>]: optional
include directorys

The 'wf-integrate' command

Command Description

wf-integrate <toolname>
<workflow file> [--expose
<ComponentName:OutputName:ExposedName,
…>] [--expose-inputs
<ComponentName:OutputName:ExposedName,
…>] [--expose-outputs
<ComponentName:OutputName:ExposedName,
…>] [--verbose|-v]

Integrate a workflow file as a component.

<toolname>: name for the tool
<workflow file>: workflow to be integrated
[--expose
<ComponentName:OutputName:ExposedName,
…>]: elements of the workflow to expose (see
User Guide)
[--expose-inputs
<ComponentName:OutputName:ExposedName,
…>]: elements of the workflow to expose (see
User Guide)
[--expose-outputs
<ComponentName:OutputName:ExposedName,
…>]: elements of the workflow to expose (see
User Guide)
[--verbose|-v]: enable verbose output

Usage

57

3.7.2. Parameters
RCE commands can use three different types of parameters. These are positional parameters, named
parameters and flags. Positional and named parameters take at least one value. However, some of them
also take a list parameters. List parameters are denoted by three dots after their name in the tables
above, while parameters that take only a single value do not have it, e.g. <parameter…>. Multiple
values for list parameters are entered using comma separation, e.g. value0, value1, value2.

Positional Parameters

Positional parameters must be entered immediately after a command. The order of the parameters must
be followed for the command to process the parameters correctly. After all positional parameters have
been entered, other types of parameters can be entered.

Named Parameters

Named parameters are optional parameters. The command input of these parameters always start with
a double dash, e.g. --name. The value must be specified after the parameter name.

Command Flags

Command flags are used to modify the operation of a command. They are always optional. Flags start
with a dash or a double dash. A single dash is used for flags consisting of only a single character, e.g.
-a. Double dash is used for flags composed of more than one letter, e.g. --all. This long form is more
descriptive and is therefore easier to understand. Command flags can have both long and short form,
e.g. -a and --all, which do not differ in execution.

3.7.2.1. Configuration Placeholder Value Files

Some workflow components use placeholders for configuration values. The values for the placeholders
are defined at workflow start. When executing workflows from the command line (e.g. in headless or
batch mode), the placeholder’s values must be defined in a file, which will be passed to the command
with the -p option. Placeholder value files have following format:

{
 <component id>/<component version> : {
 <configuration placeholder id> : <configuration value>
 },
 <component id>/<component version>/<component instance name> : {
 <configuration placeholder id> : <configuration value>Usage
 }
}

Note

Every id and every value must be in enclosed in double quotes ("…").

The component id is the id string of a component (e.g. de.rcenvironment.script), the component version
is the version of the component that is used in the workflow (e.g. 3.4). There are two ways of defining
values for configuration placeholders: per component type and per component instance. When defined
per component type, the id and version must be specified (e.g. "de.rcenvironment.script/3.4"). When
defined per component instance the component id, component version, and the name of the component
in the workflow must be specified (e.g. "de.rcenvironment.inputprovider/MyFile"). In both cases,
the configuration placeholder id, which is the name of the configuration placeholder, and the actual
configuration value must be specified. Component instance values override component type values.

Note

It is possible to mix component type and component instance values.

Below is an example placeholder value file, which defines one placeholder value (component type)
for the input provider component and a placeholder value (component instance) for a specified input
provider component of the workflow:

Usage

58

{
 "de.rcenvironment.inputprovider/3.2": {
 "inputFile": "C:/input/globalInputFile.txt"
 },
 "de.rcenvironment.inputprovider/3.2/Provider 1" : {
 "inputFile": "C:/input/Provider1.txt"
 }
}

The following table lists components and their configuration placeholders.

Component Component ID and Version Configuration Placeholders

Cluster de.rcenvironment.cluster/3.1 authuser - user name
authphrase - password (base64
encoded)

Input Provider de.rcenvironment.inputprovider/3.2<output name> - value of output

Output Writer de.rcenvironment.outputwriter/2.1targetRootFolder - path to target
root folder

Script de.rcenvironment.script/3.5 pythonExecutionPath - path to
the Python executable (only
required if Python is set as
script language)

3.8. The Event Log
The RCE Event Log provides a high-level summary of events that are relevant to users and
administrators of RCE instances.

3.8.1. Design Principles
Unlike a low-level technical log file, the Event Log is meant to aggregate events as much as possible.
Where a technical log may list several steps related to an action or event, the Event Log is meant to
focus on semantic results and final events, and condense them into a minimal number of entries.

For example, a technical log would typically represent the related events "user requested pause",
followed by "pausing", and then "paused" as separate entries, often with other events mixed in-
between.

The Event Log, in contrast, would represent this example as a single "paused" event. The details
surrounding this event are collected and represented as attributes. For example, the "paused" event
could have a "reason" attribute with a value of "initiated by user", and an optional "initiated by"
attribute providing the user’s identity information. This design allows users to quickly understand
what is happening in the system without associating multiple log events.

Of course, not all events can be merged this way. For example, the start of a network connection
should be logged once it is established, as it is unknown when it will terminate. In these such cases,
providing one or more unique association id(s) as event attribute(s) is recommended. If the event log
is consumed using specialized clients, events can be automatically associated using these ids. Even if
the event log is consumed without such tools, these association ids can still be easily found by using
text-based search or filtering.

3.8.2. Event Structure and File Representation
In the current implementation, all event entries are appended to two files in the profile directory.

Usage

59

The events-readable.log file is meant for human inspection, and provides more explicit titles
for event types and attributes. This file can be read in RCE by opening it via "File > Open", or with
any external text file reader just like a .txt file.

The events-compact.log file, on the other hand, is meant for automated parsing. It uses technical
ids for the event types and their attributes, and represents each event as a single line of UTF-8 JSON.

Event timestamps are represented differently in those files. In events-readable.log,
times are formatted in a human-readable way, in the form of <YYYY>-<MM>-
<DD>T<hh>:<mm>:<ss>.<mmm>. This format is based on ISO 8601, with milliseconds accuracy,
using "unqualified local time", i.e., no time zone information but using local time. The latter choice
was made to improve human readability when inspecting raw event data, at the cost of potential "jumps
in time" on changes in the local UTC offset, e.g., "winter" time vs. "summer" time/DST. In events-
compact.log, on the other hand, timestamps are encoded in the "_ts" JSON field as milliseconds
from 1970-01-01T00:00:00Z.

Unlike other RCE log files, these files are intentionally not cleared on the restart of an instance, in
order to provide a long-term protocol of system activity. For example, if an RCE instance is running
as a system daemon, even repeated restarts of the host system will not erase older event data.

Note that both file formats are preliminary, and the scope of event types and attributes is not fully
implemented yet. Notably, most workflow and component/tool execution events are not being logged
yet.

3.8.3. Events Types and Attributes
This section lists the specified event types and their possible attributes. The human-readable titles of
the types and attributes (listed first) are what appears in the events-readable.log file. Their
technical ids (shown in a smaller font and parantheses) are used in the events-compact.log file,
with the intention of more long-term stability.

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

User home directory
(user_home)

The "home" directory of the
user running the application.

User system id (user_name) The technical/system name of
the user running the application.

Profile location
(profile_location)

The file system location of the
profile that the application is
using.

Working directory (work_dir) The selected "working
directory" when starting the
application.

RCE version id (rce_version) The full RCE version string.

OS name and version
(os_name)

The name of the underlying
operating system, as reported by
the JRE.

Application Starting
(application.starting)

The application is starting and
has passed basic initialization,
including profile selection.

JVM version (jvm_version) The Java version, as reported by
the JRE.

Application Shutdown
Requested
(application.shutdown.requested)

A user or technical process
has requested this instance

Shutdown trigger (method) The kind of event that initiated/
requested the shutdown.
Currently not strictly specified,
for informational use only.
Current examples are "console

Usage

60

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

command", "CLI/network
signal", and null (unspecified)
(optional)

to shut down, e.g. via GUI,
console command, or system
shell command. If available,
information about the cause
should be logged as "Shutdown
trigger"/"method".

Part of a restart (is_restart) "yes" if the shutdown request
is part of a restart request, i.e.,
a new application session will
start after shutdown.
Possible values: yes, no

Application Terminating
(application.terminating)

A marker event logged at the
latest possible time during
a regular shutdown of the
application.

- (no attributes)

Port type (type) The technical type and/or
protocol of the server port.
Possible values: localnet, ssh/
uplink

IP port number (port) The IP port number.
Possible values: Integer
(1-65535)

Server Port Opened
(serverport.opened)

A network server port (typically
TCP) was opened by the
application.

IP bind address (bind_ip) The IP address the port is bound
to, which affects from which
network interfaces it can be
accessed.

Port type (type) The technical type and/or
protocol of the server port.
Possible values: localnet, ssh/
uplink

IP port number (port) The IP port number.
Possible values: Integer
(1-65535)

Server Port Closed
(serverport.closed)

A network server port (typically
TCP) was closed by the
application.

IP bind address (bind_ip) The IP address the port was
bound to.

Connection type (type) The technical type and/or
protocol of the connection.
Usually equal to the server
port’s type.
Possible values: localnet, ssh/
uplink

Incoming Connection
Accepted
(connection.incoming.accepted)

An incoming connection has
been successfully established.
This should be logged as late
as reasonably possible to avoid
"accepted" events where the
connection is immediately
closed again due to a validation
or version mismatch error.
Mutually exclusive with the
"connection.incoming.refused"
event, but may be
reached after one or more
"connection.incoming.auth.failed"

Connection id (connection_id) An association id for this
connection. The only
assumptions that should be
made about its content is that
it is a string of "reasonable"
length, not empty, suitable for
log output, and unique within
the application’s session.

Usage

61

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

Client software id
(client_version)

The software version of the
connecting client, if available
(e.g., "rce/…").

Remote node id
(remote_node_id)

The id of the remote RCE node,
if available from the protocol
type’s connection process.
This id can by any of the four
supported id types, but will
typically be an "instance session
id".
(optional)

Login/user name (login_name) The user/login/account
identifier successfully used for
authentication/authorization, if
applicable.
(optional)

Authentication method
(auth_method)

The kind of authentication/
authorization (e.g. passphrase
or private key) that was
successfully used, if applicable.
(optional)

Failure count
(auth_failure_count)

The number of failed
authentication/authorization
attempts for this connection, if
applicable.
(optional)

Remote IP address (remote_ip) The remote IP address of the
incoming connection.

Remote IP port (remote_port) The remote IP port number of
the incoming connection.

events if the server allows
multiple login attempts.

Server IP port (server_port) The local server IP port number
that the incoming connection is
connected to.

Connection type (type) The technical type and/or
protocol of the connection.
Usually equal to the server
port’s type.
Possible values: localnet, ssh/
uplink

Connection id (connection_id) An association id for this
connection. The only
assumptions that should be
made about its content is that
it is a string of "reasonable"
length, not empty, suitable for
log output, and unique within
the application’s session.

Incoming Connection Failed
To Authenticate
(connection.incoming.auth.failed)

As part of establishing an
incoming connection, an
authentication/authorization
attempt was made but failed.
Whether this failure is fatal for
the overall connection attempt
or not is implementation-
specific. If this is ultimately
followed up by a successful
authentication/authorization
attempt (in case another
attempt was allowed in
the first place), this event
should be succeeded by a
"connection.incoming.accepted"

Client software id
(client_version)

The software version of the
connecting client, if available
(e.g., "rce/…").

Usage

62

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

Login/user name (login_name) The user/login/account
identifier used for the failed
authentication/authorization
attempt.

Authentication method
(auth_method)

The kind of authentication/
authorization (e.g. passphrase or
private key) that was attempted.

Failure reason
(auth_failure_reason)

The reason why authentication/
authorization failed (e.g., wrong
password or unknown user).

Failure count
(auth_failure_count)

The number of failed
authentication/authorization
attempts for this connection.

Remote IP address (remote_ip) The remote IP address of the
incoming connection.

Remote IP port (remote_port) The remote IP port number of
the incoming connection.

event. Otherwise, this should
always be succeeded by a
"connection.incoming.refused"
event.

Server IP port (server_port) The local server IP port number
that the incoming connection is
connected to.

Connection type (type) The technical type and/or
protocol of the connection.
Usually equal to the server
port’s type.
Possible values: localnet, ssh/
uplink

Connection id (connection_id) An association id for this
connection. The only
assumptions that should be
made about its content is that
it is a string of "reasonable"
length, not empty, suitable for
log output, and unique within
the application’s session.

Client software id
(client_version)

The software version of the
connecting client, if available
(e.g., "rce/…").

Reason (close_reason) The human-readable reason
why this connection was
refused.

Last login/user name
(last_login_name)

The user/login/account
identifier used for the last failed
authentication/authorization
attempt, if applicable.
(optional)

Incoming Connection Refused
(connection.incoming.refused)

An incoming connection
has failed to complete its
login process or has been
refused for some other reason.
Mutually exclusive with the
"connection.incoming.accepted"
and
"connection.incoming.closed"
events. Both incorrect
authentication attempts as well
as authentication timeouts (e.g.
when an SSH client makes
no authentication attempt at
all) are both represented by
this event. These sub-types
can be distinguished by the
"last_auth_failure_reason"
attribute.

Last auth. failure
(last_auth_failure_reason)

The last reason why
authentication/authorization
failed (e.g., wrong password or
unknown user), if applicable.
(optional)

Usage

63

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

Last auth. method
(last_auth_method)

The last kind of authentication/
authorization (e.g. passphrase or
private key) that was attempted,
if applicable.
(optional)

Auth. failure count
(auth_failure_count)

The number of failed
authentication/authorization
attempts for this connection, if
applicable.
(optional)

Remote IP address (remote_ip) The remote IP address of the
incoming connection.

Remote IP port (remote_port) The remote IP port number of
the incoming connection.

Server IP port (server_port) The local server IP port number
that the incoming connection is
connected to.

Duration (duration) The duration (in msec) that
this connection was open/
established for. The precise
start and end times for this
calculation are implementation-
and type-dependent.

Connection type (type) The technical type and/or
protocol of the connection.
Usually equal to the server
port’s type.
Possible values: localnet, ssh/
uplink

Connection id (connection_id) An association id for this
connection. The only
assumptions that should be
made about its content is that
it is a string of "reasonable"
length, not empty, suitable for
log output, and unique within
the application’s session.

Client software id
(client_version)

The software version of the
connecting client, if available
(e.g., "rce/…").

Remote node id
(remote_node_id)

The id of the remote RCE node,
if available from the protocol
type’s connection process.
This id can by any of the four
supported id types, but will
typically be an "instance session
id".
(optional)

Incoming Connection Closed
(connection.incoming.closed)

An incoming connection
has been closed, either by
the client, the server, or a
network event. This event
is always preceded by a
"connection.incoming.accepted"
event. Mutually
exclusive with the
"connection.incoming.refused"
event.

Reason (close_reason) The human-readable reason
why this connection was closed.

Usage

64

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

Remote IP address (remote_ip) The remote IP address of the
incoming connection.

Remote IP port (remote_port) The remote IP port number of
the incoming connection.

Server IP port (server_port) The local server IP port number
that the incoming connection is
connected to.

Duration (duration) The duration (in msec) that
this connection was open/
established for. The precise
start and end times for this
calculation are implementation-
and type-dependent.

Uplink session id (session_id) The Uplink-specific session id.

SSH connection id
(connection_id)

The SSH connection
id for correlation with
"connection.incoming.*"
events.

Client software id
(client_version)

The software version of
the Uplink client; includes
information about the client
software used (e.g., "rce/…").

Protocol version
(protocol_version)

The Uplink protocol version
being used for the connection/
session, based on the initial
client-server handshake.

Effective login name
(login_name)

The final/effective login
name used. Due to namespace
mapping constraints, this
may be different from the
original login name; see
"original_login_name".

Original login name
(original_login_name)

The login name requested
by the client, before any
modifications by the server.
Omitted if equal to the effective
login name (see "login_name").
(optional)

Effective client id (client_id) The final/effective client
id used. Due to namespace
mapping constraints, this
may be different from
the original client id; see
"original_client_id".

Incoming Uplink Connection
Accepted
(uplink.incoming.accepted)

After the login credentials for
an incoming SSH connection
were accepted, this subsequent
event indicates successful
completion of the Uplink
protocol handshake, too. This
includes protocol compatibility
validation and the successful
assignment of an unused Uplink
namespace.

Original client id
(original_client_id)

The client id requested by the
client, before any modifications
by the server. Omitted if equal
to the effective client id (see
"client_id").
(optional)

Usage

65

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

Assigned namespace
(namespace)

The namespace assigned to this
client for Uplink destination
address mapping. Typically
related to the session id.

Uplink session id (session_id) The Uplink-specific session id.

SSH connection id
(connection_id)

The SSH connection
id for correlation with
"connection.incoming.*"
events.

Client software id
(client_version)

The software version of
the Uplink client; includes
information about the client
software used (e.g., "rce/…").

Protocol version
(protocol_version)

The protocol version requested
by the client. May or may not
be a version that this server
supports.

Original login name
(login_name)

The login name used by the
client, without any mapping
modification that would have
been made on success.

Original client id (client_id) The client id sent by the
client, without any mapping
modification that would have
been made on success.

Incoming Uplink Connection
Refused
(uplink.incoming.refused)

After the login credentials for
an incoming SSH connection
were accepted, this subsequent
event indicates failure of the
Uplink protocol handshake.
This may be due to a version
incompatibility or the
desired namespace already
being used. The next event
logged after this should be
"connection.incoming.closed",
as the SSH connection
was already "accepted".
Mutually exclusive with
"uplink.incoming.accepted" and
"uplink.incoming.closed".

Reason (reason) The human-readable reason for
refusing the Uplink session.

Uplink session id (session_id) The Uplink-specific session id.

SSH connection id
(connection_id)

The SSH connection
id for correlation with
"connection.incoming.*"
events.

Incoming Uplink Connection
Closed
(uplink.incoming.closed)

After a previous
"uplink.incoming.accepted"
event, this indicates the end of
the application-level Uplink
session. This event should
be logged for any kind of
connection termination,
from graceful disconnect to
low-level connection errors.
Mutually exclusive with
"uplink.incoming.refused".

Final connection state
(final_state)

The final (technical) state of the
Uplink connection; indicates
the reason for terminating the
session.

Persistent instance id
(instance_id)

The persistent part (the
"instance node id") of the
logical RCE-specific network
address.

Network Node Discovered/
Named
(network.node.named)

Either a new node in the
logical RCE network has been
discovered, or an existing node
has changed its title. Relevant
for determining which technical
node was behind a given

Instance session id (session_id) The per-session suffix of the
of the logical RCE-specific
network address. Used to
distinguish runs of the same
instance, i.e., the session id

Usage

66

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

always changes on an instance’s
restart.

Logical sub-node id
(logical_sub_node_id)

The logical "sub-node" selector
within the logical RCE-specific
network address. If absent,
then this event represents a
change of the "root" name of an
instance/node. If present, then a
logical "sub-node" has changed
its specific name, while the
"root" name was unchanged.
(optional)

Announced name (name) The title/name of the RCE
instance, as defined by its user
or administrator.

display name at a certain time.
Besides general logging, this
is also a basic security trail for
potential node "impersonation"
attempts.

Is local/own node
(is_local_node)

\"yes\" if the observed node
is the local node. This is
a convenience property to
simplify event filtering.
Possible values: yes, no
(optional, derived)

Workflow run id
(workflow_run_id)

The id string assigned to
this workflow run. Can be
considered globally unique for
all practical purposes.

Workflow controller node
(workflow_controller_node)

The logical node id of the node
designated to run the workflow
controller.

Controller is local
(workflow_controller_is_local_node)

A convenience attribute
designating whether the
workflow controller node is the
local node.
Possible values: yes, no
(derived)

Workflow file path
(local_workflow_file)

The path of the local workflow
file that was submitted for
execution, if applicable;
OTHERWISE absent.
(optional)

Workflow metadata (WIP)
(workflow_metadata)

TODO specify contents;
structured data

Workflow Request Initiated
(Request Sent)
(workflow.request.initiated)

A workflow run was initiated
from the local node. The
designated workflow controller
may be either the local or a
remote node.

success (success) Whether the workflow was
successfully initiated, i.e.,
whether the request was made
and accepted by the designated
execution node.
Possible values: yes, no

Workflow Execution
Requested (Request Received)
(workflow.execution.requested)

Workflow run id
(workflow_run_id)

The id string assigned to
this workflow run. Can be
considered globally unique for
all practical purposes.

Usage

67

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

Start timestamp (start_ts) On success, the canonical
start time of the workflow,
which will usually be close,
but not necessarily equal to
the timestamp of this event;
OTHERWISE absent. (TODO
specify format)
(optional)

Initiator node (initiator_node) The logical session node id
of the node that initiated this
workflow run. Note that in
RCE 10.x and earlier, this
value is NOT strongly verified,
and should be considered
informational only.

Initiator is local
(initiator_is_local_node)

A convenience attribute
designating whether the node
that initiated this workflow
run is the local node. Note that
in RCE 10.x and earlier, this
value is NOT strongly verified,
and should be considered
informational only.
Possible values: yes, no
(derived)

Workflow metadata (WIP)
(workflow_metadata)

TODO specify contents;
structured data

A workflow run was requested,
and an attempt was made to
initialize its workflow controller
on the local node. If controller
initialization fails, this event
MUST still be logged to make
the request visible, as the
".initiated" event may have
been logged be on a remote
node.

success (success) Whether the workflow was
successfully initialized.
Possible values: yes, no

Workflow run id
(workflow_run_id)

The id string assigned to
this workflow run. Can be
considered globally unique for
all practical purposes.

End timestamp (end_ts) The canonical end time of the
workflow, which will usually be
close, but not necessarily equal
to the timestamp of this event.
(TODO specify format)

Duration (duration) A convenience attribute
specifying the duration of this
workflow run. (TODO specify
format)
(derived)

Workflow Execution
Completed
(workflow.execution.completed)

The end of a local workflow
controller’s execution. (TODO
clarify whether this may be
logged on a failed ".requested"
event or not.).

Final workflow state
(final_state)

The final state of the workflow,
as defined by the workflow
engine.
Possible values: FINISHED,
CANCELLED, FAILED,
RESULTS_REJECTED

Workflow Request Completed
(workflow.request.completed)

Workflow run id
(workflow_run_id)

The id string assigned to
this workflow run. Can be

Usage

68

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

considered globally unique for
all practical purposes.

The final event of a workflow
run that was initiated by the
local node. (TODO clarify
whether this may be logged on
a failed ".initiate" event or not.).

Final workflow state
(final_state)

The final state of the workflow,
as defined by the workflow
engine.
Possible values: FINISHED,
CANCELLED, FAILED,
RESULTS_REJECTED

Workflow run id
(workflow_run_id)

The id string assigned to
this workflow run. Can be
considered globally unique for
all practical purposes.

Component run id
(component_run_id)

The id string assigned to this
component run. Unique within
the scope of the associated
workflow.

Executing node
(execution_controller_node)

The logical session node id of
the node designated to be this
component run’s execution
controller.

Component/Tool Execution
Initiated (Request Sent)
(component.request.initiated)

A workflow component run was
initiated from the local node,
which is always the workflow
controller. The node controlling
the component’s execution may
be the local or a remote one.

Executing node is local
(execution_controller_is_local_node)

A convenience attribute
designating whether this
component’s run execution
controller node is the local
node.
Possible values: yes, no
(derived)

Workflow run id
(workflow_run_id)

The id string assigned to
this workflow run. Can be
considered globally unique for
all practical purposes.

Component run id
(component_run_id)

The id string assigned to this
component run. Unique within
the scope of the associated
workflow.

Workflow controller node
(workflow_controller_node)

The logical session node id of
the node running the workflow
controller. Note that in RCE
10.x and earlier, this value
is NOT strongly verified,
and should be considered
informational only.

Workflow contr. is local
(workflow_controller_is_local_node)

A convenience attribute
designating whether the
workflow controller node is
the local node. Note that in
RCE 10.x and earlier, this
value is NOT strongly verified,
and should be considered
informational only.

Component/Tool Execution
Requested
(component.execution.requested)

A workflow component run was
requested, and an attempt was
made to initialize its controller
on the local node. If controller
initialization fails, this event
MUST still be logged to make
the request visible, as the
".initiated" event may have
been logged be on a remote
workflow controller node.

Start timestamp (start_ts) On success, the canonical start
time of the component run,

Usage

69

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

which will usually be close,
but not necessarily equal to
the timestamp of this event;
OTHERWISE absent. (TODO
specify format)
(optional)

Workflow run id
(workflow_run_id)

The id string assigned to
this workflow run. Can be
considered globally unique for
all practical purposes.

Component run id
(component_run_id)

The id string assigned to this
component run. Unique within
the scope of the associated
workflow.

End timestamp (end_ts) The canonical end time of
the component run, which
will usually be close, but
not necessarily equal to the
timestamp of this event. (TODO
specify format)

Duration (duration) A convenience attribute
specifying the wall-clock
duration of this component run.
(TODO specify format)
(derived)

Component/Tool Execution
Completed
(component.execution.completed)

The end of a local workflow
controller’s execution. (TODO
clarify whether this may be
logged on a failed ".requested"
event or not.).

Final component state
(final_state)

The final state of the
component, as defined by the
workflow engine.
Possible values: FINISHED,
CANCELLED, FAILED,
RESULTS_REJECTED

Workflow run id
(workflow_run_id)

The id string assigned to
this workflow run. Can be
considered globally unique for
all practical purposes.

Component run id
(component_run_id)

The id string assigned to this
component run. Unique within
the scope of the associated
workflow.

End timestamp (end_ts) The canonical end time of
the component run, which
will usually be close, but
not necessarily equal to the
timestamp of this event. (TODO
specify format)

Component/Tool Execution
Request Completed
(component.request.completed)

The final event of a component
run that was initiated by a
workflow controller running on
the local node. (TODO clarify
whether this may be logged on
a failed ".initiate" event or not.).

Duration (duration) A convenience attribute
specifying the wall-clock
duration of this component run.
(TODO specify format)
(derived)

Usage

70

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

Final component state
(final_state)

The final state of the
component, as defined by the
workflow engine.
Possible values: FINISHED,
CANCELLED, FAILED,
RESULTS_REJECTED

Account type (type) The type of accounts that were
initialized, e.g. "ssh".
Possible values: ssh

New number of accounts
(number_of_accounts)

Indicates the total number
of registered accounts after
initialization.

Login/Account Data
Initialized
(accounts.initialized)

A set of accounts has been
initialized, typically at
application or subsystem
startup. Account data origin (origin) Indicates the data source from

which the initial account
data was read. Absent if not
applicable for the current
account type.
(optional)

Account type (type) The type of accounts that were
updated, e.g. "ssh".
Possible values: ssh

New number of accounts
(number_of_accounts)

Indicates the total number of
registered accounts after the
update (NOT the number of
changes!).

Login/Account Data Updated
(accounts.updated)

A set of accounts has been
updated at application runtime,
after being already initialized.

Account data origin (origin) Indicates the data source from
which the updated account
data was read. Absent if not
applicable for the current
account type.
(optional)

Java process id (jvm_pid) The PID of the main process
running the JVM. Depending
on the operating system, this
process may either be the RCE
executable or a separate Java
process.

Processor count (JVM)
(jvm_processor_count)

The number of processors, as
reported by the JVM.

Heap limit (JVM)
(jvm_heap_limit)

The configured heap (Java
RAM) limit, as reported by the
JVM.

System RAM (native)
(system_total_ram)

The total system RAM in
bytes, as reported by the system
monitoring library.

System Monitoring Initialized
(sysmon.initialized)

Indicates that the system
monitoring subsystem was
initialized and logs static
system information.

Logical CPUs (native)
(system_logical_cpus)

The number of "logical CPUs",
as reported by the system
monitoring library.

Custom Event
(custom)

Custom event type id (type) A custom type id describing
the logged event. It should
generally follow the naming

Usage

71

Event Type (Title / Id /
Description)

Attribute (Title / Id) Attribute Description

A custom event type, allowing
extensions or plugins to make
use of the event logging system.
This event type is special in the
way that its list of attributes
is not pre-defined, except for
"type". This allows custom
events to log all kinds of extra
attributes. Consequently, any
event log validation code must
have a special rule to accept
those attributes. Note that
while custom attribute keys are
supported, there are still certain
rules for them. For now, they
must start with a-z, end with
a-z or a digit, and not exceed
the maximum length defined
above. It is also recommended
to keep them lowercase and dot-
separated for consistency.

pattern of the standard events,
and plugins/extensions should
strive to make those ids
collision-free.

Note

It is possible that event types not listed here were/are/will be logged by past, current, or future RCE versions.
Therefore, any automated code for parsing event log data MUST tolerate event types not listed here.

72

Appendix A. Script API Reference
This section contains a reference for the API that is accessible via the script component.

Method Description

def RCE.close_all_outputs () Closes all outputs that are known in RCE

def RCE.close_output (name) Closes the RCE output with the given name

def RCE.fail (reason) Fails the RCE component with the given reason

def RCE.get_execution_count () Returns the current execution count of the RCE
component

def
RCE.get_input_names_with_datum
()

Returns all input names that have got a data value
from RCE

def RCE.get_output_names () Returns the read names of all outputs from RCE

def RCE.get_state_dict () Returns the current state dictionary

def RCE.getallinputs () Gets a dictionary with all inputs from RCE

def RCE.read_input (name) Gets the value for the given input name or an error,
if the input is not there (e.g. not required and it got
no value)

def RCE.read_input
(name,defaultvalue)

Gets the value for the given input name or returns
the default value if there is no input connected and
the input not required

def RCE.read_state_variable
(name)

Reads the given state variables value, if it exists,
else None is returned

def RCE.read_state_variable
(name,defaultvalue)

Reads the given state variables value, if it exists,
else the default value is returned and stored in the
dictionary

def RCE.write_not_a_value_output
(name)

Sets the given output to "not a value" data type

def RCE.write_output (name,value) Sets the given value to the output "name" which
will be read from RCE

def RCE.write_state_variable
(name,value)

Writes a variable name in the dictionary for the
components state

def RCE.create_input_file () Creates and returns a file from the input file
factory

Syntax: file = RCE.create_input_file ()

def add_variable (name,value) Adds the variable declaration of name (i.e. name
= value) to the input file

Syntax: file.add_variable(name, value)

def add_comment(value) Adds a comment (i.e. # value) to the given file

Syntax: file.add_comment(value)

def add_dictionary (name) Defines an empty Python dictionary with the
given name (i.e. name = {}) and adds it to the
input file. Note: The data type of name has to be
String.

Syntax: file.add_dictionary(name)

Script API Reference

73

Method Description

def add_value_to_dictionary
(dic,key,value)

Writes a (key,value) pair (i.e. dic[key] = value)
to the dictionary dic into the input file. Note: An
empty dictionary with the given name dic has to
be defined beforehand.

Syntax: file.add_value_to_dictionary(dic, key,
value)

def write_to_file (filename) Writes a previously created input file to the
temp, working or tool dir, depending on the user
configurations, and returns the path to the file. The
name of the written file is the given filename .
The component will fail with an error, if a file
with the given filename already exists. Note:
The data type of filename has to be String.
An input file must first be created using the
RCE.create_input_file () method.

Syntax: filepath = file.write_to_file(filename)

def write_to_file
(filename,overwriteFile)

Writes a previously created input file to the
temp, working or tool dir, depending on the user
configurations, and returns the path to the file. The
name of the written file is the given filename .
The boolean parameter overwriteFile is optional.
If set to True , an existing file with the given
filename will be overwritten. The default value is
False . Note: The data type of filename has to be
String. An input file must first be created using
the RCE.create_input_file () method.

Syntax: filepath= file.write_to_file(filename,
True)

