Standard Workflow Components

Build 10.7.0.0202512081401_SNAPSHOT



Table of Contents

1. ClUSEEr COMPONENT ..ottt ettt e ettt e et et e et et e et et e e e e bb e e e enea s 1
L SYNOPSIS ettt ettt ettt 1

1.2, RAONAIE ...ttt ettt e e 1

L3, USA0E ettt 1
L1.3.0. CHUSLEY 11 .ottt 1

1.3.2. INPUESOULPULS T8 ... 2

L.3.30 00D 8D .o 2

2. ConVErger COMPONENT ......uuietiiette e e et ettt e e et s et e e et e e et e e eae e eanaeee 4
2.0, SYNOPSIS -ttt ettt ettt e e ettt e e e e n e e e e ean 4

2.2, REHONEIE .....eieeeiit ettt 4

2.3 USA0E coeiii ettt et en 4
2.3.1. Converge Criteriatal ........ooeieeiieeie e 4

2.3.2. INPULS/OULPULS T8I0 ....ceevtieeeeii e 4

2.3.3. Nested and Fault-tolerant LOOP ta .........c.uuveiiiinieiiiiccei e 4

3. CPACS WHILEr COMPONENL ... eeiiti ettt ettt e ettt e e e et e et ett e et e et aeeeeabaeeeentaeeeerbnaeeees 5
3L SYNOPSIS -ttt ettt et e et e et e e e a e e e e aan 5

32 USA0E ittt et e 5

33 RUNIME GUI .ttt e 5

4. Datahase COMPONENL ......eeuuieeiitte ettt e et e et e e ettt e e et et e e e e et e e e e ete e e eeete e eeenrenaeeees 6
A1, SYNOPSIS - .eeetieeeett ettt ettt ettt a et e e e e a e e aaaas 6

A2, RAHONAIE ...ttt 6

4.3, USSR ..ttt et 6
4.3.1. Registering a database CONNECLON ...........vcieviiieieiie e 6

4.3.2. Defining a database CONNECLION ............iiiiiiiiiiiie e 6

4.3.3. Use the CredentialS .........ueiiiiiieeeii e 7

4.3.4. Datahase StAEMENTS ... coieeiieiiii e 7

4.3.5. Writing multiple times to the Same OULPUL .............vviiiiiiiiiiie e, 7

4.3.6. OULPUL "SUCCESS" .....ivtiiiirieeetieeiti ettt et et e e e e e e e et e e e ees 7

4.3.7. Valid Statement tYPES ... coeeeeieieiie et 7

4.3.8. Handling Small Tables .......ccoouuiiiiiiiii e 7

4.3.9. Handling RESUIT SELS .......ccvviieiiiiiieieii et 8

4.3.10. Local EXECULION ONIY ...uiiiiiiieeiiii ettt 8

A4, EXBMPIES ..ottt 8

5. Design of EXperiments COMPONENT ........oieerte it eeeiii e e eeti e e eeti e et et e e eebi e e eeniaeeees 10
DL, SYNMOPSIS ettt ettt e e 10

5.2 U S0 o etiiii ettt et 10

6. Evaluation Memory COMPONENT ........ceeuueeiiiii ettt ettt e e et e e et eeeeaa s 11
B. 1. SYNMOPSIS ..ttt ettt e e 11

B.2. RELUONAIE .....eiiiiit et 11

5.3 U SAE 1.u ittt ettt ettt et 11
6.3.1. Evaluation Memory File ...... ..o 11

6.3.2. Handling LOOP FailUreS ...........oieiiiiiiciiii e 11

6.3.3. INPULS/OULPULS .....ceevteieiiie ettt ettt e eeaans 11

7. EXCE COMPONENT ...ttt ettt e et e et e et e e e ebe s 13
T L. SYNOPSIS ettt et r e 13

7.2, REIHONAIE ....ouieiii et 13

7.3 USA0E oeiiii ittt ettt e 13
T3 Il 13

7.3.2. INPULTOULPULS .....oeevteieiii ettt ettt eeeeeans 14

T.3.3. IMIBEIOS ...t 15

T4 REQUITEITIENES ..ottt ettt e ettt e ettt e e ettt e et et e e et ebt e e e eebeaeeeebeaeaeen 15

8. INput Provider COMPONENT ........ceuuiiieiii ettt e e e e e e e ne s 16
8L, SYNMOPSIS ettt 16

8.2  REIONAIE .....uiiieii e 16

8.3 U Sa0E ettt e 16




Standard Workflow Components

9. JOINEr COMPONENL ...eeuueiteeitt et ettt e et e et e e et e e et e e et e eeta e et eett e estneesanaeetnseesnnaasnnaees 19
S S 3o o £ 19

9.2, REHONEAIE ...eeviieeeii e e e et e e et a e 19

0.3, U S o ititiii ittt 19

10. OptiMIiZEr COMPONENL ...evuueiiteeite e e e e e e et e e et e e et e e st e et e e et e eata e et eetn e ranaeannnss 21
0 0 4 o o1 21

10.2. REHONEIE «..oevviieeeei et e e e e e e et e e 21

O R U1 o TP 21

10.4. Optimization AIgorithm AP ... e 23
O B 2 7S Tl @0 = o (N 23

10.4.2. How to integrate an algorithm into RCE ...........ccoooviiiiiiiniiin e, 23

10.4.2.1. GUI Properties DEfinition ..........ccoveiiiiiiiiiiciiccie e 23

10.4.2.2. SOUICE FOIAEN ....evvviieiiiiieeee e 25

10.4.2.3. Example GUI configuration jSON ..........cccceuveiiieiiineeiineeiieeeieeenn, 25

10.4.3. MOAUIE DESCIPLION ...iivieieicie e e e e e e e e e e e e e e e e eaaees 26

11, Output WIIter COMPONENE .....iieteiiiieeiiee e ee e e e e e e et e e et e e et e e e et e e et e e st e eeaneeaneees 28
4 o o1 28

2 o 1 = PSP 28

T T U o P 28

12. Parametric Study COMPONENL .....uuiiieiiiieii e e e e e e e e e e e et e e et e e et e eat e eeanaerenaes 31
Nt IS4 o o1 31

N S 1o = PSP 31

R R U 1 o P 31

13. SCP Input Loader COMPONENL ......uiiiiiiiiieeie e e ee e e e e e e e e e e e e e e e e e e e aaeeaanns 33
TR0 3 o o1 33

14. SCP Output Collector COMPONENE .......cuuiiiieeiiee e e e e e e e e e e e e e e e e eanaaees 34
Y4 o o1 34

TS v L @0 7o) 1= o | 35
T 3 o o1 35

15.2. REHONEIE . .ooviiieeiei et e e e e 35

T R U L o P 35
15.3.1. Python EXECULADIE ........ouiiiii e 35

15.3.2. SCHIPL APl Lo e e 36

15.3.3. SCript COMPONENE SEALES .....cvvveiiiieeeie e ee e e e e e e e e e e e eanes 37

15.3.4. INPUL FIlE FaCLOrY ...covviiii e e 37

15.4. SCript APl REFEIENCE ....uuiieiiiiie e et e e e e e 38

16. SWItCh COMPONENT ... it e e e e e e e et e e et e e et e e et eeaaeesanaes 40
T IS4 o o1 40

16.2. REHONEIE ...oeviiieeiei et e e et 40

T R UL o = TP 40

17. TIGL ViIiewer COMPONENE ...uuuiiiteiii e e e e e et e st e et e e et e e st e et e e st e eateeateestnaeeanaanes 42
5 4 o o1 42

S [ o PP 42

A R U Lo P 42

18. XML Loader COMPONENL .. .cvueiinieiitieeiieeeeee e et e e et e e et e e e e e e et e e et e e et e e st e estn e ernaeeanans 43
T 4 o o1 43

ST U 1 o P 43
18.2.1. Writing values into an XML file .......cccoiiiiiiiiii e 43

18.2.2. Reading values from an XML fil€ .......ccoooiiiiiiiiiii e 43

19. XML Merger COmMPONENT ....vuuiiieieiieieet et et e e et e e e et e et et e n e e n e e eenees 44
S 3 o o1 44

19.2. REHONAIE . .oeviieeeee e e e 44

ST R U1 o P 45

20. XML ValuES COMPONENT ....eivuiiiieiiiieiii e et e e e e e e e et e e et e e et e e st e e et e e aa e eatn e e eaneeeanaes 46
20,0, SYNOPSIS 1otueiteiit et e e et e e e e a e 46
P U o T PP 46




List of Tables

10.1. CONFIQUIBLTON.PY ..eevtneeeenti ettt ettt ettt ettt ettt e et e et et e e e e e e e e ab e e e e na s
10.2. @VAIUBLTONJSON ...ttt ettt ettt e et e e et et e e e e e e e e een

10.3. result.py




1. Cluster Component

1.1. Synopsis

The Cluster component allows submission of jobs to a cluster.

1.2. Rationale

The Cluster component submits jobs described by agiven job script to the queuing system of acluster.
It allows to upload directories beforehand and to download directories after the job is terminated.

To check if jobs are finished, the Cluster component polls the queuing system every minute and asks
for their states. The connection to the cluster is established via SSH. For the submission, a directory
(sandbox-[uuid]) is created on the cluster in the user’s home directory. It will serve as the current
working directory for al remote command line calls.

The remote directory structureis as follows:

/ sandbox- [ i d]
literation-0
/cluster-job-0
/i nput
/ out put
/cluster-job-1
/i nput
/ out put

/ cl ust er-j ob-shar ed-i nput
/iteration-1
/cluster-job-0
/i nput
/ out put

| cluster-job-shared-input

j ob

The job script is uploaded to /sandbox-[id]/job. The job submission is done from /sandbox-[id]/
iteration-[n]/cluster-job-[n]/.

If the job failed and the Cluster component should be marked as failed, a file named job_failed must
be created in /sandbox-[id]/iteration-[ n]/cluster-job-[n]/output. The content of the file is used as error

message. Theoutput directoriesare not downl oaded for thefailed job and all remaining jobsterminated
afterwards.

1.3. Usage

The Cluster component is configured as follows:

1.3.1. Cluster tab

In the Cluster tab define the information needed to connect to a cluster via SSH. Define host IP or
resolvable host name, port number, etc. The working directory root is the folder, where the sandbox




Cluster Component

folder mentioned above is created. Also define the queuing system running on the cluster. In some
cases, the queuing system console commands like gsub, gstat, etc. are not known within a non-
interactive SSH shell on the cluster. For that, you can optionally define the absolute paths to the

required commands explicitly. If you don’t know them, just type ‘which gsub’ etc. on a cluster's
console and you will get them.

Component Properties: Cluster

Configure host Configure queuing system
Cluster 2 L L
Inputs/Outputs Host host.dir.de Ping host Queuing system SGE -
dob Port 2

Path 'gsub’ {optional)

Working directory root  /home/usr Path 'gstat’ {optional)

| Delete working directory after execution

1.3.2. Inputs/Outputs tab

In the tab Inputs/Outputs you see the inputs and outputs of the Cluster component. The inputs and
outputs are static and cannot be modified except the scheduling behavior.

1. Job count: The count of jobs to submit on each iteration

2. Job inputs: Input directories which are uploaded before each iteration to /sandbox-[id]/iteration-n/
cluster-job-n/input (in the order asthey arrive, O for first directory, 1 for second, etc.)

3. Sharedjob input: Input directory which is uploaded before each iteration to /sandbox-[id]/iteration-
n/shared-input

4. Job outputs: Output directory which is download after each iteration from sandbox-[id]/iteration-
n/cluster-job-n/output

Component Properties: Cluster

e Inputs OQutputs
Inputs/Outputs Name Data type Handling Constraint Add Name Data type
Job <3 Job count teqer Directol

Single (con..  Required if ... o A —
Single (con...  Requirec Edit

Single (con..  Required if ...

1.3.3. Job tab

The job itself is either described in the Job tab or is provided within each input directory (/sandbox-
[id]/iteration-[#]/cluster-job-[#]/input). Select the check box accordingly. If it is provided within each
input directory, the name of the script must be: run_cluster_job.sh

Component Properties: Cluster

Configure script
Cluster 2 >

Inputs/Outputs Script is provided within each incoming input directory. Name of script: run_cluster_job.sh

Job Note: Component is marked as failed, if a file with name 'cluster_job_failed' exists in at least one of the job's output directories. See F1 help for more details.

Open in Editor

Show whitespace characters
#!-bin-sh
*

# —— our names ——

#5 -N trizze

#$ —P 1234567

#$ -5 <bin<csh

# Make sure that the .e and o file arrive in the
# working directory

#5 —cwd

To see the native standard out and error of the job submission see the Workflow console.




Cluster Component

£ Network View | [ Workflow Data Browser | =] Log | 1 Properties |[ir] Workflow List |~ Workflow Console &2 | %3 Cluster Job Monitor| & Command Console

¥]info [¥]stdout [¥]stder |[ALL] v| |[ALL] w | search in messages

T.. Time Heszage Component Workf low n
i 2014-06-24 15:03:17 682  Uploading directory: wis Cluster enpty_2014-06-24_15:0

i 2014-06-24 15:03:17.711 Uploading directory: avl Cluster empty_2014-06-24_15:0

i 2014-06-24 15:03:41,762 Directory uploaded: wis Cluster enpty_2014-06-24_15:0

i 2014-06-24 15:03:49,390 Directory uploaded: avl Cluster empty_2014-06-24_15:0

i 2014-06-24 15:03:49,390 Uploading shared input dirsctory finished Cluster enpty_2014-06-24_15:0

i 2014-06-24 15:03:49,390 Uploading input directories finished Cluster enpty_2014-06-24_15:0=
i 2014-06-24 15:03:49.392  Uploading job script: run cluster_job sh Cluster enpty_2014-06-24_15:0

i 2014-06-24 15:03:49,942 Job script uploaded: run_cluster job.sh Cluster empty_2014-06-24_15:0
E  2014-06-24 15:03:52.048  Your job 130487 {"trizze') has heen submitted Cluster enpty_2014-06-24 15:0: -
bl il b




2. Converger Component

2.1. Synopsis

The Converger component checks values of type float and integer for convergence by comparing
current values with values from previous runs.

2.2. Rationale

The Converger component checks values of al of itsinputs for convergence. It compares the values
of the current run with the values from previous runs. Absolute and relative convergence is supported.
If the absolute difference is|ess then a pre-defined epsilon the values are considered as converged in
terms of absolute convergence. In case of relative convergence the absolute difference is divided by
the maximum of the considered values. The Converger component considers a loop as converged as
soon as al if the values to consider are converged.

To prevent endless-running loops, a maximum number of convergence check can be defined.

In thefinal run of the Converger component, the values most recently received are sent to the outputs
with the suffix *_converged'.

2.3. Usage

2.3.1.

2.3.2.

2.3.3.

The Converger component has four configuration tabs.

Converge criteria tab

Define the values for the epsilons in case of absolute and relative convergence. Y ou can also define
the number of iterations (k) which should be considered. In case of k > 1 not only the current and
previous values but the minimum and maximum from the set of current plus previous k values are
considered. So k = 1 means only current and previous values are considered, k = 2 current and two
previous, etc. You can also limit the number of convergence checks.

Inputs/Outputs tab

Create an input for each valueto consider. An output with the same name and an output with the suffix
'_converged' are created automatically. In the "Add" dialog you can aso decide whether to define a
start value. In case if not, an additional input is created with the suffix '_start'.

Nested and Fault-tolerant Loop tab

See general section "Workflows' in the user guide.




3. CPACS Writer Component

3.1. Synopsis

The CPACS Writer component savesincoming CPACS content asan xml fileon thelocal file system.
It has aruntime GUI to show the CPACSfilein TiGL Viewer.

3.2. Usage

Onthe“Target” tab you can select thetarget folder wherethefilewill be stored. If you select the option
“Overwrite CPACS file each run” the filename will be “cpacs.xml” and the file will be overwritten
each time the component runs. If you do not select this option a new file will be written on each run
with a filename following the scheme “ cpacs [iteration count]_[timestamp].xmi”.

Y ou can define the scheduling of the static input channels on the tab “Inputs/Outputs’. Y ou are also
able to add dynamic input or output channels here. Thus it is possible to map single values into the
XML dataset via XPATH declaration. Moreover, you can select single values in order to write them
in an output channel.

Note
Search for the X PathChooser help in the User Guide (3. Usage -> 2. Workflows -> 2.3 Workflow components) to
garner further information about the usage of XPaths.

Onthe"“Workflow Data” tabyou can select whether to store history datafor each component run or not.

3.3. Runtime GUI

Double clicking on the CPACS Writer component during or after workflow execution opens the
“CPACS Geometry” view where the current CPACS content is shown. By clicking the button “ Show
CPACS dataset in TIGL Viewer” the corresponding view “TIGL Viewer” will show the CPACS
geometry in the TiGL Viewer, if that viewer is configured. See the help entry for the TiGL Viewer
component and the configuration reference for moreinformation on how to configurethe TiGL viewer.




4. Database Component

4.1. Synopsis

With the database component, MySQL and PostgreSQL databases can be accessed. Database
management however is not the focus of this component.

4.2. Rationale

The database component executes one or more SQL statements and can write the result of each
statement into one output if specified.

The statement can be composed using placeholders for inputs configured in the component (see
"Inputs/Outputs”).

Currently supported statement typesare SELECT, INSERT, UPDATE, DELETE. Management tasks,
like creating users and handling their privileges as well as altering the database structure are not the
purpose of the component.

4.3. Usage

4.3.1.

4.3.2.

Registering a database connector

Toregister aJDBC database connector, you simply need to place the connector .jar filein the subfolder
"...Jextras/database_connectors" in your RCE installation folder. It will automatically beloaded when
you restart RCE. As mentioned above: Currently, only driversfor MySQL and PostgreSQL databases
are supported. If you require a different driver class feel free to contact us.

Note

In previous rel eases we shipped a JDBC connector with RCE. Since we no longer deliver this for security reasons,
at least one JDBC database connector must be registered before using the database component. Please inform us
if there are problems with the integration of current versions of connectors.

Defining a database connection

In the properties view of the database component there is a " Database”" tab. Here you can define the
database connection thiscomponent works on. Notethat currently driversfor MySQL and PostgreSQL
databases are supported. The credentials required to access the database can be entered later on when
you execute the workflow.




Database Component

4.3.3.

4.3.4.

4.3.5.

4.3.6.

4.3.7.

4.3.8.

Use the credentials

When you execute a workflow that contains a database component you are asked for the username
and password. Note that you can store the password in an encrypted storage if you check the "save"
check box.

Database statements

For each database component you can enter multiple statements. They are defined in the " Statement”
tab. Pressing the "< + >" tab will open anew statement tab. Every tab must not contain more than one
statement. For every statement you can define whether its result should be written to an output. To
dynamically compose database statements by using placeholders for inputs you can make use of the
"Input" group. A placeholder isadded at the current caret position which will be replaced by the actual
input value at runtime. Likewise the "Templates' group will insert templates for the given statement
types which you can edit to fit your purpose.

Writing multiple times to the same output

It is possibleto configure multiple statementsto write their result setsto the same output. Theseresults
are queued, which can cause subsequent components to run multiple times to consume the queued
values. Note that these components must allow queuing of input values for this to work.

Output "success”

There is a static output of type boolean named "success'. It is set to true if the given statement and
result set distribution was successful. It is useful when a database statement does not yield a result
set (like an INSERT statement, for instance) but should trigger the start of a succeeding component.
If there are multiple statements defined in a component instance then the "success' output is written
when al statements have been processed.

Valid statement types

The database component is designed to query and update databases on alightweight basis. As already
mentioned above, typical database management statements like creating, altering and dropping tables
or working on views and user accounts is not the aim of this component. Therefore, only a set of
four database statement types is supported. Meaning that each statement must begin with one of the
following phrases:

» SELECT
* INSERT
» UPDATE

 DELETE

Handling Small Tables

Inputs of type "Small Table" can only be used in INSERT statements.

Example:




Database Component

4.3.9.

‘I NSERT | NTO tabl e_name (id, coll, col2, col3) VALUES ${in: nySnal | Tabl e} ‘

Outputs of type "Small Table" arefilled by converting the result set from the database to RCE's data
types. Note that small tables cannot be encapsulated in small tables.

Handling Result Sets

If aresult set is empty but configured to be written to an output, thisisinterpreted as an error.

If aresult set has exactly one row and one column, it is tried to be mapped to the respective RCE
datatype.

If aresult set has more than one entry and the respective output channel is small table a mapping is
executed.

If the respective output channel is boolean, short text, integer or float but the result set has more than
one entry thisisinterpreted as a potential erroneous configuration and causes the component to fail.

If valuesin the result set are mapped to Java's datatype "Big Decimal” it cannot be processed asthere
is currently no data type of RCE that can represent it.

If values in the result set are mapped to Java's data type Timestamp it cannot be processed as there
is currently no data type of RCE that can represent it. As a workaround you can cast or transfer the
timestamp to some textual representation with SQL functionalities and work on with this.

If values in the result set are null, it is mapped to RCE's data type "Empty" and has the textual
representation "nil".

4.3.10. Local Execution Only

Please note that the database component cannot be published and remotely used. To use the database
in your local workflow make sure you can access the database from your machine and configure the
database component accordingly.

4.4. Examples

Thefollowing examplesrefer to the "world" example which can be found at the mysgl website: https://
dev.mysqgl.com/doc/index-other.html

Thefollowing list gives examplesfor the statement types without inputs configured in the component:

e SELECT * FROMGity; \

e DELETE FROM City WHERE | D = 3076; ‘
e UPDATE City SET Popul ation = 1000000 WHERE | D = 3071, ‘

e |NSERT INTO City (1D, Nanme, CountryCode, District, Population) VALUES (4080, 'Cocheni, 'DEU ,
' Rhei nl and-Pfal z', 5213);

The following examples demonstrate the usage of inputs configured in the component:
e SELECT * FROM City WHERE ID = ${in:id}; \

e DELETE FROMGity WHERE ID = ${in:id}; \



https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Database Component

e UPDATE City SET Popul ation = ${in: popul ati on} WHERE I D = ${in:id}; ‘

e |INSERT INTO City (ID, Nane, CountryCode, District, Population) VALUES(${in:id}, ${in:nane},
${in:code}, ${in:district}, ${in:population});

Considering inputs of type small table, the example above in the context of the world database would
look asfollows, assumed the input is properly defined:

‘I NSERT INTO City (ID, Name, CountryCode, District, Population) VALUES ${in:smal | Tabl e}; ‘

For further information you may want to refer to the MySQL documentation: https://dev.mysqgl.com/
doc/refman/5.7/en/sgl-syntax.html



https://dev.mysql.com/doc/refman/5.7/en/sql-syntax.html
https://dev.mysql.com/doc/refman/5.7/en/sql-syntax.html

5. Design of Experiments Component

5.1. Synopsis

The Design of Experiment component sends values (floating-point numbers) to other components.
The values are either generated on the base of a design method or are provided by a custom design
table. The values can be used to sample a solution within a bounded space. They are independent to
each other.

5.2. Usage

First, outputs must be defined. Each output is of type float and has alower and an upper bound. The
definition of inputs is optional. If inputs are defined, the DOE component maps one set of output
values to one set of input values. |.e., output values are sent as soon as input values (corresponding to
previously sent output values) are received. Queuing of input values is not allowed. If no inputs are
defined, the output values are sent all at once at workflow start.

Second, the design method must be selected. Y ou can choose between four methods:
 Full factoria design [http://en.wikipedia.org/wiki/Factorial _experiment]

« Latin hypercube design [http://en.wikipedia.org/wiki/Latin_hypercube_sampling]
* Monte Carlo design [http://en.wikipedia.org/wiki/Monte_Carlo_method)]

e Custom design

Thefirst three methods generate the output val ues on the base of established design methods (seelinks
above). For two of them, the values are random. Y ou can choose a seed in order to reuse the same
valueslater. The number of samples can be defined with the option "Number of levels'/"Desired runs'
and can be communicated to other components using the "Number of samples" output, which is sent
out on thefirst iteration of the DOE component.

Thelast method allows to define a custom design table. Thetable at the bottom is editable and values
can be entered. The table can be saved asacsv file and can be re-loaded later on. It isaso possible to
define a custom sample range by modifying the " Start at sample #*' and "End at sample #" option.

For help concerning nested and fault-tolerant loop settings, see the general section "Workflows" in
the user guide.

10


http://en.wikipedia.org/wiki/Factorial_experiment
http://en.wikipedia.org/wiki/Factorial_experiment
http://en.wikipedia.org/wiki/Latin_hypercube_sampling
http://en.wikipedia.org/wiki/Latin_hypercube_sampling
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Monte_Carlo_method

6. Evaluation Memory Component

6.1. Synopsis

The Evaluation Memory component stores results of loop runs and re-uses them in future runs.

6.2. Rationale

The Evaluation Memory component is used within loops. It can speed up loops by reusing results
of past loop runs. Usually, the Evaluation Memory component is used before/after the loop driver
component (e.g., Design of Experiments, Optimizer). It takes the design values of the loop driver
component. Then, it either sends stored result values directly back to theloop driver or it forwardsthe
values to the actual evaluation loop. If the evaluation loop is done, the newly evaluated result values
are fed back to the loop driver via the Evaluation Memory component, so that it can store the result
values together with the design values sent before for later reuse. The values are stored in a file on
the file system.

6.3. Usage

6.3.1.

6.3.2.

6.3.3.

You need to configure three things: inputs/outputs, the path to the evaluation memory file wherein
the values are stored respectively should be stored, and whether loop failures should be considered
asvalid loop results.

Evaluation Memory File

The path to the evaluation memory fileis either configured in the '"Memory File' configuration tab or
is defined at workflow start if the checkbox is checked appropriately.

Handling Loop Failures

If acomponent in the loop fails due to invalid parameters and sends a value of type 'not-a-value, the
value will pass the Evaluation Memory component and will be stored as a loop result for the design
values sent into the loop. By (un-)checking the checkbox 'Consider loop failures as valid loop results
you can decide wether the stored values should be considered and re-used in case of equal design
values.

Inputs/Outputs

Theinputs and outputs are configured in the " Inputs/Outputs’ configuration tab. There arefivetables,
three of which areread-only. Inthefirst one (seen from left to right and top to bottom), create an input
for each design value sent from the evaluation loop driver to the loop. For each input an output is
created aswell in the second table. These are used in case the design values are just forwarded into the
loop. In the third table, create one input for each result value evaluated by the loop. Again, for each

11



Evaluation Memory Component

input an output is created as well, this time in the fourth table. These are used to forward the result
values to the evaluation loop driver.

For each design value of type float or integer added as an input in the first step above, a tolerance
on this value may be given. Incoming design values are compared to stored ones with respect to this
tolerance. Say, e.g., that there exist two inputs x1 and x2, both of type float. Theinput x1 is configured
with atolerance of 10%, while the input x2 is configured with a tolerance of 20%. If the evaluation
memory component receives the input values x1 = 10.0 and x2 = 20.0, then it first checks whether it
has already stored results for these precise values. If thisis not the case, it checks whether it has stored
result values for inputsin the ranges 9.0 <= x1 <= 11.0 and 16.0 <= x2 <= 24.0.

* If no such value exists, then the input values are forwarded to the loop to be evaluated.
« If exactly one such value exists, then the stored result values are returned to the loop driver.

» The behavior for the case that multiple such items exist can be configured in the "Evaluation
Memory" tab: Strict behavior causesthe Evaluation memory component to forward the input values
to the loop for evaluation, while lenient behavior causes the component to arbitrarily pick any of
the stored values and return them to the loop driver. The behavior can only be chosen if thereis at
least one input that has some tolerance configured.

Finally, theinputs and outputs must be connected to the eval uation loop driver and to theloop properly.
If done, there are actually two loops. evaluation loop driver - Evaluation Memory component and
Evaluation Memory component - eval uation loop. Thefirst oneisdriven by the evaluation loop driver,
the second one is driven by the Evaluation Memory component.

12



/. Excel Component

7.1. Synopsis

The Excel Component is designed to access Microsoft Excel files within RCE and to execute macros.

7.2. Rationale

This component wraps an existing Microsoft Excel filewhich islinked to RCE. The genera principle
is.

1. Copy of the existing Excel file astemporary file in atemporary folder (working copy)

2. Wait for al input channels which are needed to run the component (depending on how input
handling and constraints are set)

3. Execute VBA-macro “Before Excel run”

N

. Copy al input channelsto their specific cell ranges. If there are multiple valuesin an input channel
the first value occurring will be copied (“firstin, first out”).

. Update al formulas
. Execute VBA-macro “ After input variables are written”
. Update all formulas

. Read all output channel values from their specific cell range

© 00 N o o

. Execute VBA-macro “After Excel run”

10.Delete temporary Excel file

7.3. Usage

The Excel component has three tabs for configuration.

7.3.1. File

In the 'File' tab you can link an Excel file to the RCE component. Note that the Excel file must be
located within the workflow's project. Click "Link an Excel file ..." and navigate to the Excd file of

your choice.
| ;
File Choose Excel File:
Inputs/Cutputs Link an Excel file to this companent. A working-copy will be made during run of workflow.

Macros
Link an Excel file f- W e,
History Data MyExcelWorkflow MyExcelFile, xls

13



Excel Component

7.3.2. Inputs/Outputs

The 'Inputs/Outputs' tab can be used to create inputs and outputs for the Excel component. The
configuration of the channels of both typesis (mostly) similar. An RCE-channel is always connected
to aspecific Excel cell range. The button “ Autodiscover” discovers automatically all input and output
channels which are described as user-specific cell areas which start with “1_" for input-channels and

with “O_" for output channels respectively.

Inputs/Qutputs  [Name | Data type | Handing [Constraint | Address | Expendcelaces | Add | [bame [ Data type [ Address [k emptyenmes || aad |
Macros allnputl  Float Single {consumed)  Required  SheetD!A1  false =oioutput1 Float SheetDIAZ False
W Edit Edit
. |

R Add Input X|

Mame: | MyInput

Data type: IFIoat vI R Add Output x|

Handling: ISingIe {consumed) 'l MName: |My0utput

Constraint: IRequired 'I Data type: IFIoat 'I

Configuration Configuration

r~Excel configuration

ISheetlJ!Al

Expand Cell Area: [

Address:

Excel configuration
Address:

Delete empty entries: |

| SheetDlall

Select address in Excel file... |

Select address in Excel file... |

o1

Cancel |

o1

Cancel |

The following list gives a short description of al channel configuration parameters:

Element Description

Name The name of the RCE-channel

Data Type See RCE user guide (Coupling Workflow
Components)

Handling See RCE user guide (Coupling Workflow
Components)

Constraint See RCE user guide (Coupling Workflow

Components)

Expand Cell Area (only input channels)

If the user does not know the size of the cell area
which she wants to insert, this field can be set
to true. Now the upper left cell area field can
be sdlected in “Address’-parameter. From that
address on the complete table will be inserted,
ignoring existing cell entries

Delete empty entries (only output channels)

If aselected cell area contains empty rows at the
end these will be cut off when setting thisfield to
true.

Button "Select address in Excel file... "

To select a cell area in Excel this button opens
the file in Microsoft Excel so the user can select
a specific cell area.

14



Excel Component

7.3.3. Macros

In the 'Macros' tab you can configure which VBA macros are to be run during runtime.

File

Inputs/Outputs

Macros
History Data

Choose Macro:

Define macros to invoke at designated times. Macros are used to perform custom actions in Excel workbooks.

Before Excel run E‘
After input variables are written |Modul1.Makro1 E‘
after Excel run [~]

Discover Macros

When in Microsoft Excel propertiesthe access to the VBA-project object model is granted the macros
are available VBA macros are discovered automatrically. All available macros can be chosen in the
respective dropdown menu.

7.4. Requirements

1. Microsoft Excel must be installed. The component is being tested with Microsoft Excel 2010.

2. For an automatic detection of VBA-macrosthe VBA-project must be trusted. Please start Excel as
administrator. In Microsoft Excel 2010 navigate to "File -> Options -> Trust center -> Trust center
settings -> macro settings' and check the "trust access to the VBA project object model" option.

15



8. Input Provider Component

8.1. Synopsis

The Input Provider component sends values to inputs of other components.

8.2. Rationale

The Input Provider sends values to other components, e.g. as starting values. Therefore, the Input
Provider writes specified valuesto its outputs. The outputs must be connected to theinputs of the other
components. The values are sent once and immediately after the workflow has been started.

8.3. Usage

For each value to send you need to create an output for the Input Provider component by clicking the
"Add..." button next to the outputs table. For each output you can decide whether to define the value
directly or to define it at workflow start by (un-)checking the check box "Define at workflow start".

m New Output = |

Name: input_1

Data type: | Float - |

Configuration

Value: 4|

Define at workflow start

[ oK ] | Cancel |

If it is defined directly it is stored in the workflow file. If you share the workflow with others the
defined values will be shared as well.

If itisdefined at workflow start only aplaceholder isstored intheworkflow file. It will bereplaced with
the actual value defined at workflow start. If you share the workflow with others only the placeholder
will be shared and the other person needs to define the value at workflow start by herself.

If you liketo send files or directories to other components you have three options. Y ou can choose the
option that suits you best. In terms of workflow sharing, consider the following:

1. Select the file/directory to send at workflow start (you will be asked for selection in the workflow
execution wizard). Choose this option if you like to share the workflow (.wf file) with others and
don't want to share the file/directory (e.g. because it contains sensitive data).

16



Input Provider Component

m MNew Output &J‘
Name: input file 1
Data type: [Flle 'l

Configuration

Value: | -
Define at workflow start

Select from project Select from file system

[ ok ][ concel |

2. Select thefile/directory from the project in the workspace where the workflow fileisstored. Choose
that option if you like to share the workflow (.wf file) as well as the file/directory with others. In
that case, you need to share the whole project (e.g. asan archivefile - right-click on the project and
export it asan archivefile). The other person needsto import that project into the RCE workspace.
The workflow will run out-of-box using the file/directory of the shared project.

m New Qutput &J‘
MName: input file 2
Data type: [File VI

Configuration

Value:  /ExampleProject/CPACSxml

[ Define at workflow start

[ Select from project I [Select from file system]

[ ok ][ conce |

3. Select thefile/directory from file system. Choosethat optionsif you don't liketo sharethe workflow
with othersat all and if thefile/directory needsto remain at aspecified placein thelocal file system.

~
[} New Output &J
MName: input_file_3
Data type: [File VI

Configuration

Value:  Di\Data\input.tet

[ Define at workflow start

[ Select from project I [Select from file system]

[ ok ][ conce |

Y ou will see your outputs in the table similar like this:

17



Input Provider Component

Input Provider

Outputs Qutputs

Advanced Name Data type Value Add
=rinput_1 Float 4 =
=rinput_2 Float
=rinput file 1 File - Remove
=rinput_file_2 File ExampleProject/CPACSxml
=rinput_file_3 File D:\Data\input.bet

@& Mote: You must run the Input Provider component on the RCE host that stores the files and/or the directories,

After that, you can connect the outputs from the Input Provider to any other compatible input from
other components. The values (either defined directly or defined at workflow start) will be sent to the
connected inputs of the other components immediately after the workflow has been started.

18



9. Joiner Component

9.1. Synopsis

The Joiner component joins multiple connectionsto asingle one.

9.2. Rationale

It is forbidden to connect two outputs to one single input. The reason for that is the current approach
how it is determined whether aworkflow is finished. If a workflow component is finished it sends a
dedicated data package to al of the inputs connected. As soon as such a data package is received the
input is closed. A workflow component is considered asfinishif al of itsinputs are closed. If aninput
is connected to two outputs its workflow component might be considered as finished by mistake:

Finished

” Finished

Running

Here, workflow component C finishes as soon as A is finished. The Joiner component solves the
problem by joining multiple connections into a single one. It will send the dedicated data package
closing the inputs of C only if it has received the data package from A and B:

Finished

) .\,Running Running
loiner c
Running/\
B

Workflow component C will finish as soon as A and B are finished.

9.3. Usage

In the Inputs/Outputs configuration tab choose the data type and the number of inputs to join. Note
that the connections in RCE are typed. Thus, only connections of the same type can be joined.

19



Joiner Component

Component Properties: Joiner

— = =
Inputs/Outputs Configuration

Inputs to join

ER—

[, el eriionst 23 =
% Palette b
754 =
613 2 Add Label
Param...5tudy) (= CPACS
(= Data e
[ ] ="} (= Data Flow <
6! i P Ji5]| - Prosider
Parame...y (1) Script 3> Joiner
| e (£
(= Evaluation
ai (= Execution
Parame..y (2) = XML L
(== _Deprecated -
== Network| ﬂ ‘Workflow Data Brow;ar| El Log [l’:l Properties i3 “E‘Workﬂow L|§t| &l Workflow Console = ¥ =08

Inputs Outputs
MName Data type Handling Constraint Mame Data type
= Input 001 Float Queue (cons.. - =7 Joined Float
li>-]1npu1:(]02 Float Queue (cons.. -
5 Input 003 Float Queue (cons -

20




10. Optimizer Component

10.1.

10.2.

10.3.

Synopsis

The Optimizer component allows the optimization of design variablesin aworkflow.

Rationale

The Optimizer component uses a black-box optimization software library. By starting the component,
an input file for the selected optimization algorithm is created and the software will be started in the
background. Different optimization packages can be installed.

One package that is delivered with RCE on Windows x64 and Linux x64 machinesis Dakota. Dakota
was tested on the following distributions. Windows 10, Windows Server 2019, Ubuntu 18.04, and
CentOS 8.

For more information about the Dakota Package see the Dakota Project page [https.//
dakota.sandia.gov/].

Usage
To use the optimizer component you need to do the following steps:

* In the algorithm tab you can choose an optimization algorithm that fits your problem. There are
several algorithms from the Dakota package available.

Component Properties: Optimizer

Algorithm Algorithm

Inputs/Outputs Main algorithm

Fault Tolerance Dakota Quasi-Newton method v] [Algorithm properties
ficeted oo Daketa Coliny COBYLA (Constraint Optimization By Linear Approximations) and SLED 11 SP 2.
Workflow Data Dakota Coliny Evolutionary Algorithm hat).

Dakota HOPSPACK Asynch Pattern Search
Dakota Multi Objective Genetic Algorithm

Dakota NOMAD (Mesh Adaptive Direct Search Algorithm)
Dakota Single Objective Genetic Algorithm
Daketa Surrcgate-Based Local

There are properties for each agorithm. For editing, click on the 'Algorithm Properties' button. The
appearing dialog showsthe properties of the chosen algorithm. The properties differ from a gorithm
to algorithm. For more information about the properties see the documentation of the package.

If you have an operating system, on which the default Dakota does not work, you have the option to
choose a custom Dakota binary by checking the box 'Use custom dakota binary'. Y ou will be asked
for the Dakota executable path at workflow start. This can be either a downloaded version from the

21


https://dakota.sandia.gov/
https://dakota.sandia.gov/
https://dakota.sandia.gov/

Optimizer Component

dakota website or a self compiled binary with the source code from the Dakota website. For more
information about compiling Dakota see: https://software.sandia.gov/trac/dakota/wiki/Devel oper

» The next step is to define the inputs and outputs for the component. There are three types of data
you can configure.

1

The objective function variables are the one to be optimized. For each variable you can specify
if it should be minimized, be maximized or be searched for a specific value (solve for). If you
have more than one objective function, you can define their weight in the optimization process.
If there is only one objective function, the weight will be ignored. Note that some agorithms
support single- and multi-objective optimization.

If you have defined some design variables, you aso can choose if the objective function you
create has gradients or not. If you select this, new inputs will appear in the connection editor,
which are intended for the values from the gradients. Note that for every design variable you
have, a new input for the objective function exists.

. The constraint variables are used to bound particular variablesto aregion or value. If a solution

isfound but it causes a constraint variable to be out of bounds, the solution is not valid. Again,
the constraints can have gradients.

. The design variables are the values that are modified by the algorithm to find an optimal

solution. For each variable you have to define a startvalue which will be theinitial value for the
optimization algorithm. Y ou also have to define the lower and upper bound for each variable.

All data have to be either afloat or a vector data type.

Note

Some Dakota algorithms do not support discrete optimization. For discrete design variables the following
algorithms are available:

» Dakota Coliny Evolutionary Algorithm
» Dakota Multi Objective Genetic Algorithm
» DakotaNOMAD

» Dakota Single Objective Genetic Algorithm
All other Dakota methods will ignore discrete design variables during optimization.

There are three more tables for endpoints. They are just read-only and can not be modified. They
are created automatically when configuring the Optimizer.

1

The 'Start value inputs' table shows which design variables need start values before running.
Start values can be the starting value for this design variable, if the option 'Has start value' in
the design variable dialog is not chosen.

Other possible start values are the lower and upper bounds of a design variable, if the option
'Has unified bounds' is not selected.

. Inthe 'Optimal design variables outputs' table, the outputs for the values of the optimized point

are shown.

. The'Gradients table shows which objective functions should have gradient inputs as well. This

is chosen in the dialog for the objective functions (‘Has gradient’).

After these steps the optimizer component is ready to start. In arunning workflow, you are able to see
the output from the Dakota optimizer in the Workflow console.

By double clicking the Optimizer component in the runtime view of the workflow, you will get the
values the optimizer produces and the possibility to export these values to an Excel file. You are also
able to plot a graph with the given results in the diagram tab.

22


https://software.sandia.gov/trac/dakota/wiki/Developer

Optimizer Component

), Optimizer &2
Property Value Optimizer
showlegend  true 1 —
showTitle true _7___,__——*‘__7__
title Optimizer -
traces Trace[1] 05 _7___,__——7—“'4'_
Khwes Xewis [2] -
0] x I L L Lo o L o A
[ Iteration 0 01 02 03 04 05 06 07 08 08 1 11 12 13 14 15 16 17 18 18 2
Yixes Yiis [1] X
[0] f r T T T T T T T T T T T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50 5 60 65 70 75 80 8 90 95 100
Iteration
Add trace

For help concerning nested and fault-tolerant loop settings, see the section 'Usage/Workflows' in the
user guide.

10.4. Optimization Algorithm API

Manual on how to use the Optimization Algorithm API.

10.4.1. Basic Concept

The RCE Optimization Algorithm API enablesthe user to integrate their own optimization a gorithms
into RCE and use them in the common Optimizer Component. The APl is based on Python, so the
user's algorithm must be callable from phyton, e.g. through a system call.

10.4.2. How to integrate an algorithm into RCE

The location where the API looks for integrated algorithmsisin RCE's profile folder: <pr of i | e>/
i ntegration/optim zer/.Below this path, every subfolder must have a specific structure in
order to be recognized as an optimizer integration. Each subfolder must contain two folders with
thenames"gui_properties_configuration" and "source”. An exampleintegration "example_algorithm"
is available at the installation path of RCE in the subfolder "examples/optimization_algorithm_api/
optimizer". Copy it to your profile and you can use this algorithm in RCE.

10.4.2.1. GUI Properties Definition

Within the "gui_properties_configuration” folder, the GUI of the Optimizer Component must be
configured for the integrated algorithms. At first, there has to be a file named "algorithms.json™. In
thisfile, RCE looks for the algorithms to be defined. The fileis structured as follows:

{

"Name of algorithnt:"name of json file for algorithnt

}

For example:

{

"Narme of nethodl" : "nethodl",
"Nanme of nethod2" : "nethod2"

}

where "methodl.json" and "method2.json" exist in the same directory.

The method files d'so have to be in a certain format which looks like this:

23



Optimizer Component

"met hodNane": " Name of nethod",
"optim zer Package": "generic",
"specificSettings":{
"propertyNanme": {
" Qui Nane": "Nane shown in optimzer GU",

“dataType": ["Int" | "Real" | "String" | "Bool"],
"SWIW dget": ["Text" | "Conbo" | "Check"],
"Defaul t Val ue": ""

"Val ue":"",

"Val i dation":""

}
}

}

The "optimizerPackage' must always have the value "generic" and the "methodName" must have
the same value as defined in the "algorithms.json”. In the section "specificSettings', properties
can be defined in order to make them configurable in the RCE GUI. You can choose between
three different types of GUI widgets and four different data types. The properties will be
displayed when you open the "Algorithm properties..." view in the RCE's Algorithm section of the
Optimizer component. Three categories are available to organize the properties on different tabs:

"commonSettings'," specificSettings' and "responsesSettings'.

Every property must have the following fields:

GuiName: The namethat isdisplayed inthe"Algorithm properties..." view and describesthe property.
dataType: The datatype of the current property. Valid values are:

* Int: an integer number

* Real: afloat number

e String: atext

SWTWidget: This value defines what kind of GUI element is used for the property. Valid values are:
» Text: atext box where the user can enter any string

e Combo: a dropdown menu with pre defined values. When using the Combo, you have to define
the values to be shown, using:

» Choices: A comma separated list of the values, e.g. "Option 1, Option 2"
» Check: acheckbox to select an option

DefaultValue: The default value that is chosen if the user does not manually enter a value for the
property. For Combos, this must be one of the "Choices'.

Value: The value must always be an empty string ("").

Validation: For Int or Real datatypes you can add a validation. Possible validations are:
» > >= < <=followed by anumber, e.g. ">=0"

» "required" or "optiona" if avalue must be entered or can be empty

» empty string "" if no validation is required

All required and configurable properties for the integrated algorithm should be defined in a json
file using the format described above. Apart from that, no further adjustments are necessary in the
"gui_properties_configuration” folder.

You will find a more detailed example json file at the end of this manual. (cf. Section 10.4.2.3,
“Example GUI configuration json™)

24



Optimizer Component

10.4.2.2. Source Folder

Inthe "source" folder, the algorithm logic must be defined. Two files are mandatory, which will be the
entry point for the Optimizer Component. One file must be named "python_path", which only contains
one single line that points to the executable of a python installation. The other file must be named
"generic_optimizer.py". This script must call your own optimizer method. In this script you can use
the Optimizer Algorithm API. The API contains three modules. Import the modules as follows:

from RCE_Optim zer _APl inport configuration

from RCE_Optim zer _API inport eval uation
from RCE_Optim zer _APl inport result

Module Description:

« configuration: This module contains al information that is needed to configure the optimization
method. Y ou can get the design variables names and counts and the objective names and weigths.
Furthermore you can access the property values configured by the user in the GUI.

* evaluation: Usethis moduleyou start an evaluation run in RCE and get the result of each evaluation
and end the optimizer.

* result: If an evaluation isdone, it generates a new result object. It contains objective and constraint
values, their gradients and the failed inputs from RCE and provides methods to access them. The
result object islost at the next evaluation unlessit is explicitly saved somewhere.

For detailed information on the modules and the included methods see Section Section 10.4.3,
“Module Description”

10.4.2.3. Example GUI configuration json

{
"met hodNane" : "Name of nethod",
“optim zer Package" : "generic",
"commonSettings" : {

}.
“specificSettings" : {
"text Exanple" : {

"Qui Nane" : "Enter Value:",
"Qui Order" : "1",

“dat aType" : "Real ",

"SWIW dget " : "Text",
"Defaul t Val ue" : "1.0",
"Val ue" : "",

"Validation" : "<=1.0"

}.
"conboExanpl e" : {

"Qui Nane" : "Sel ect paraneter",

"Qui Order” : "2",

"dataType" : "String",

" SWI'W dget " : " Conbo",

" Choi ces" : "choicel, choi ce2, choi ce3",
"Def aul t Val ue" : "choicel",

"Val ue" : ""

I
"checkboxExampl e" : {

“Qui Nane" : "Any flag:",
"Cui Order” : "3",
“dat aType" : "Bool ",
"SWI'W dget " : "Check",
"Defaul t Val ue" : "fal se",
"Val ue" : ""
}
}.
“responsesSettings" : {

}

25



Optimizer Component

Note

Property names must be unique on each tab. Otherwise the last configuration is used.

Note

The field "GuiOrder" is optional. Use thisfield to specify or change easily the order of the widgetsin the GUI.

10.4.3. Module Description

Table 10.1. configuration.py

M ethod Description
def get_agorithm() Returns the selected algorithm
def get_design_variable_count() Returns the number of design variables

def get_design variable names() Returns alist of variable names

def Returns adictionary of the variables and their corresponding

get_design variable max_values() |upper bound

def Returns adictionary of the variables and their corresponding

get_design variable min_values() |lower bound

def Returns the upper bound of the given variable

get_design variable_max_value(vari ablariaie)name”

def Returns the lower bound of the given variable

get_design variable min_value(variali\eanabhe) name"

def get_start_values() Returns adictionary of the variables and their corresponding
start values

def get_start value(variable name) |Returnsthe start value of the given variable "variable_name"

def get_step values() Returns adictionary of the variables and their corresponding
start values

def Returns whether the given variable "variable name" is

is discrete variable(variable name) |discrete or not

def get_constraint_names() Returns alist of constraint names

def get_constraint_max_values() Returns adictionary of the constraints and their
corresponding upper bound

def get_constraint_min_values() Returns adictionary of the constraints and their
corresponding lower bound

def Returns the upper bound of the given constraint

get_constraint_max_value(constraint | feongjraint_name"

def Returns the lower bound of the given constraint

get_constraint_min_value(constraint |Heoretraint_name"

def get_objective_names() Returns alist of objectives names

def get_objective_weights() Returns adictionary of the objectives and their

corresponding weight

def get_optimization_targets() Returns adictionary of the objectives and their
corresponding optimization target

def get_optimization_target(name) | Returns the optimization target of the given objective "name"
or None if an objective "name" does not exists

def get_ common_properties() Returns adictionary of all common properties and their
corresponding values

26



Optimizer Component

Method

Description

def get_common_property(name)

Returns the value of the given common property "name" or
Noneif a property "name" does not exists

def get_ common_property _keys()

Returns alist of all common property keys

def get_specific_properties()

Returns adictionary of all specific properties and their
corresponding values

def get_specific_property(name)

Returns the value of the given specific property "name" or
Noneif aproperty "name" does not exists

def get_specific_property keys()

Returns alist of all specific property keys

def get_responses_properties()

Returns adictionary of all responses properties and their
corresponding values

def get_responses_property(name)

Returns the value of the given responses property "name" or
Noneif aproperty "name" does not exists

def get_responses property _keys()

Returns alist of all responses property keys

Table 10.2. evaluation.json

M ethod

Description

def evaluate(number_evaluation,
design variables, grad_request
False)

Starts the evaluation run with the given run number, designs
variables and aboolean whether gradients are requested or not
(default value is False). The result object of the current runis
returned.

Note: The design variables are handed over in an
alphabetically sorted list as displayed in the Properties view
of RCE's GUI. Be aware that uppercase is treated before
lowercase variable names. Vectors are passed entry-wise.

Example: Given thefollowing design variables"Varl", "Vec"
and "var2" with the values 1, [2,3,4] and 2 in evaluation
run number 5. Start the evaluation run with evaluate(5,
[1,2,3,4,2]).

def
finalize(optimal_evaluation_number)

Ends the Optimization with the given run number as the
optimal run. The optimal values are written to the outputs.

Table 10.3. result.py

Method

Description

def
get_constraint_gradient(constraint_na

Returns the gradient value of the given constraint
reenstraint_name" or None if the constraint does not exists or
no gradient is defined

get_objective _gradient(objective nan

def Returnsthe value of the given constraint "constraint_name" or
get_constraint_value(constraint_nameNone if a constraint "constraint_name" does not exists

def get failed() Returns alist of the failed optimization runs

def Returns the gradient value of the given objective

&@bjective_name" or None if the objective does not exists or
no gradient is defined

def
get_objective value(objective_name)

Returns the value of the given objective "objective_name" or
Noneif the objective does not exists

def has_gradient(name)

Returns Trueif the given input "name" has agradient defined,
False otherwise

27




11. Output Writer Component

11.1. Synopsis

The Output Writer stores outputs from other components on the local file system.

11.2. Rationale

The Output Writer receives inputs from other workflow components and saves them in a pre-
configured folder. The inputs can either be files or directories, which are written directly to the local
file system, or inputs of simple data types (Boolean, Float, Integer, Short Text), which are written into

text files of a user-defined format.

11.3. Usage

The"Root Location" tab allows the user to define the location where the outputs should be stored on
thefile system. Here the user can also configure whether existing files or directories on thefile system

are to be overwritten or not.

Output to save must be send to the Output Writer via inputs that can be defined on the "Inputs” tab.
If you add a hew input of type file or directory, you must define the desired target name and path (of
the file or directory). Both of them can be created using placeholders:

MName: Incoming File

Data type: |Fi|e

Handling: |Queue(consumedj

Constraint: | Required

Configuration

Options

Target file/directory: [Component name]_[Timestamp]
|[Timestamp] v| Insert

Target folder: |[root] v|

Sub folder [Workflow name]l

MNote: Currently, only one sub folder is allowed.

| [Werkflow name]

) (e

[

OK

|

Cancel

Target file/directory: Thenamethefilewill begivenonthelocal file system. Y ou caninsert different
placeholders by clicking the “Insert” button. The provided placeholders are:

» [Component name]: Name of the Output Writer component in the workflow.

* [Input name]: Name of the input you define at the top of this dialog.

28



Output Writer Component

[Timestamp]: Date and time at file creation.

e [Timestamp at workflow start]: Date and time at workflow start.

[Workflow name]: Name of the workflow.

[Execution count]: Execution count of the Output Writer.

[Original filename]: The name the file/directory had before it was sent to the Output Writer.
It is possible to combine placehol ders within a single name.

Target folder: Thefolder, wherethefile or directory should be stored. It isrelativeto the[root] folder
(see below). Currently, only one sub folder below the [root] folder is supported. Y ou can either select
afolder, which was aready used for other inputs or you can “create” anew one just by defining anew
folder name within in the text box. Again, the folder name can contain placehol ders.

Root folder: Thefilesand directoriesreceived viatheinputswill be saved to the[root] folder. Y ou can
either select the [root] folder at workflow start or you can definea“static” one within the component’s
configuration tab below the inputs table. This folder is used on every workflow execution. Note:
Defining a static folder might cause problems, if you execute the workflow on another RCE node (e.g.
the defined hard drive doesn’t exist on the other machine).

For inputs of simple datatypes, you only haveto specify thetype of theinput in the*add input” dial og.
If you are using such inputs, you have to specify targets on the “Data Sheet” tab. A target receives
the values of one or more simple data inputs and writes them into a text file of user-specified format.
Several targets can be specified in one Output Writer. However, each input can only be written into
one target.

Note

The Output Writer only writes output into a target file when values for ALL of the selected inputs have arrived.
|.e. it is expected that for each iteration exactly one value for each of the inputs arrives.

In the “Add target” dialog you have to specify the following:

Target file options

Targetfile  [Component name] Results.csv

[component name] = | [Insert
Target folder: | [root] -
Subfolder  [Waorkilow name]

Note: Currently, only one sub folder is allowed.

[(Worldlow name] = | [Insert
Inputs to be written to this target
@x @y
Format options
File header: Timestamp:Result x; Resulty

(E.g. namel:name2)

[Linebreak] =] [insen]

Timestampl [y Lincbreak]
W) e [Timestamp,[xL[yl: [Linebreak]

(E.g. [inputl}[input2])

[ <] [insert

File handling: [Append (Results in a single file containing alliterations) -
Note: Only affects files from previous iterations,
¥ the file exists at workflow start, the filename for the new file will be changed.

Target file: The name the file will be given on the local file system. You can insert different
placeholders by clicking the “Insert” button. The provided placeholders are:

* [Component name]: Name of the Output Writer component in the workflow.

e [Timestamp at workflow start]: Date and time at workflow start.

29



Output Writer Component

e [Workflow name]: Name of the workflow.

Target folder: Thefolder wherethefile should be stored. It isrelative to the [root] folder (see below).
Currently, only one sub folder below the [root] folder is supported. You can either select a folder,
which was already used for other inputs or you can “create” a new one just by defining a new folder
name within in the text box. Again, the folder name can contain placeholders.

Inputsinvolved: Hereyou can select which inputs should bewritten into thetarget file. Only inputs of
simple data types are shown here. Inputsthat are already selected for another target are not selectable.

File header: Here you can define the header of the output file, which will be written once at the
beginning of the target file (only if “Append” is selected in the “file handling” dropdown). Y ou can
insert different placeholders by clicking the “Insert” button. The provided placeholders are;

 [Linebreak]: A linebresk.
» [Timestamp]: Date and time at file creation.
 [Execution count]: Execution count of the Output Writer.

Value(s) format: Here you can define the format of the input values for one iteration. Y ou can insert
different placeholders by clicking the “Insert” button. The provided placeholders are:

* [xy]: Thereceived value for a selected input xy.

[Linebreak]: A linebreak. (Linebreaks will not be inserted automatically between iterations).

[Timestamp]: Date and time when the inputs were received .

» [Execution count]: Execution count of the Output Writer.

File handling: Here you can select one of the following options:

» Append: The standard option where the inputs of all iterations are written to the samefile.
» Auto-Rename: For each iteration, anew file will be created for each iteration.

e Overide: Like Auto-Rename, but the file from the previous iteration will be overwritten, so you
have one file that only contains the inputs from the last iteration.

30



12. Parametric Study Component

12.1.

12.2.

12.3.

Synopsis

The Parametric Study Component is for running a workflow through a set of values for one input
variable.

Rationale

The component starts at a given value and puts it into the workflow. When the workflow is finished,
another value is given to the workflow, which is the first value plus a given step size. This iterates
until athird given value, the upper bound, isreached. Theresulted data can be seenif aninput variable
for the component is defined.

Usage

To use the parametric study component you need to define the range and the step size, the study will
iterate over. There are two different ways to do that. Either by defining the parameters pre execution
or by using inputs that will define the parameters during execution.

Pre Execution

The settings to define the study parameters before execution can be found in the properties tab of the
parametric study. There is a pre-defined endpoint named Design Variable which has three metadata
values. By clicking on the endpoint and then on the "Edit"-Button, these values may be defined.

During Execution

At the same place where you can define the metadata values you may choose to use an input for
the values. If you do so, more inputs will appear that must be connected to a providing output. Note
that if you want to use the parametric study in a nested loop and define the settings via inputs the
parametric study must run in passiv mode (i. e. an input to Inputs(to forward) or Inputs(evaluation
results received from loop) must be added).

The“from” valueisthe start point of the iteration and will be the first value to be send out. After that,
the step size will be added to the last sent value and be the next one. Thiswill be done, until the next
to be sent out value is bigger than the “to” value.

Thereisan option called "Fit step size to bounds'. This option takes the given step size, but then sets
it to the nearest step size so that the upper bound is never overstepped but the last value will be exactly
the upper bound.

Note that the step size must always be positive. If the "to" value is smaller than the "from" value, the
step sizeis still positive, but will decrease the stepsinternally.

For all three options "from", "to" and "step size", it is possible to declare them to be defined from an
input. For that, the "use input" checkbox must be checked. Then an input for the selected option will
be created, which will receive the value for the option during the workflow execution.

31



Parametric Study Component

Component Properties: Parametric Study

Inputs/Outputs Inputs (evaluation results received from loop) Output (values to evaluate)
Fault Tolerance MName Data type Handling Constraint| | Add Name Datatype From To Stepsize Fitstepsi.. Add
Nested Loop x Float Single {consumed)  Required = = Design variable  Float 0 0 1 true o
== Done Boolean - |- -
Remove = Outer loop done  Boolean - - |- - Remove
Inputs (to forward) Outputs (forwarded)
Name Datatype  Handling Constraint Add Name Datatype  From To Step size Fit step si...
Sy Float Single (consumed Required Edit = Float -
ce=y_start  Float Single (consumed Required
Remave

Having these values defined, there are two possible modes for running the component.

If you define a new dynamic endpoint in the parameters tab and connect it to other components, the
study will send out the values subsequently. Meaning, a new value is sent out as soon as the study
receives aresponse at the newly defined endpoint (except for the first value, which gets sent without
the need for aresponse). This makesit possible to plot agraph when the workflow is started, because
for every sent out value there is a corresponding incoming value.

& - Parametric Study 52

Property Value Parametric Study
showL.egend true 5 _’Fﬁ___d—-
showTitle true 4 o
title Parametric Study f__',__ﬂf"
s - e
traces Trac.e[l] 5 o —+
a KAxes Khxis [1] .*—Fﬂ"_fﬂ
- [0] Desi.gn wariable f_f—f'”
4 Yhxes Yhxis [1] L o e L L e e e s o oy e e e e |
. [0] ¥ 0 1 2 3 4 5 6 7 g 9 10
Design variable
]

Chart |Data |

The other mode is active, if no parameter was defined. In this case, all values in the study range are
sent out in the first run of the component, so the next component will have al input at the same time.
With this, agraph like in the first mode is not possible.

Output

In a running workflow, you are able to see the result from a workflow run by double clicking the
component in the Parametric Study view. There you can plot a graph with the results or see them in
atablein the data tab.

For help concerning nested and fault-tolerant loop settings, see the general section "Workflows' in
the user guide.

32



13. SCP Input Loader Component

13.1. Synopsis

The SCP Input L oader is ahelper component for building workflows that will be published for remote
access. Thisis the point where the Remote Workflow Access feature sends the provided inputs into

your workflow. Y ou can change the data types or add/delete inputsin the properties view of the input
loader.

33



14. SCP Output Collector Component

14.1. Synopsis

The SCP Output Collector Component Usage is a helper component for building workflows that will
be published for remote access. This is the point where the Remote Workflow Access feature and

collects the final outputs from your workflow. You can change the data types or add/del ete outputs
in the properties view of the output collector.




15. Script Component

15.1. Synopsis

The Script component allows the execution of a self-written script. Currently, two script languages
are supported:

 Python: must be installed on the executing system

 Jython [http://www.jython.org/] : a Javaimplementation of Python.

15.2. Rationale

Based on the selection, the component uses either a natively installed Python version or the Java
implementation Jython. This approach was selected on purpose because many users use their own
specific modules and want to use Python for this, others are satisfied with the standard Python
operations and need a faster implementation which is Jython.

Limitations:

Only single file scripts are allowed, because the user's script contents are converted into a temporary
"wrapped" script, executed in the executor’s temporary directory. It is currently not possible to copy
satellite files like modules or input data files to the directory where the script isresiding.

The execution speed of the Python implementation is dominated by the initial start-up time of the
Python interpreter (or virtual machine, just-in-time compiler). Each script execution first wraps the
user script into a temporary script file, then starts the Python executable in a new process and after
that, processes the output bindings.

Advantages of native Python:

» 100% binary compatibility

» Exotic setups are supported automatically, including third-party modules, binary libraries,
cpyt hon and so on. Users gain the benefit of using additionally installed Python modules like
<<nunpy>>, <<sci py>> or <<nysql db>>

» Self-compiled Python interpreters with binary extensions can be used

» No problemswith library indexing as e.g. in Jython

15.3. Usage

15.3.1. Python Executable

There are two optionsfor using Python as script language, the (old) "Python" and the " Python (Python
Agent)" option.

35


http://www.jython.org/
http://www.jython.org/

Script Component

If the"Python" option was chosen, the path to the Python executable must be chosen at workflow start
(inthe second page of theworkflow executiondial og). Thismust be donefor every Script component of
theworkflow. If all components shall use the same Python interpreter, the“ Apply to all” button helps.

"Python (Python Agent)" is a new experimental implementation for using Python as script language
that aims to improve on the (old) "Python" option and will replace it in the future. If you want to use
the Python Agent, the path to the Python executable must be configured in RCE configuration file.
For further information please see chapter 2.2 of the RCE User Guide.

15.3.2. Script API

For interacting with RCE in the script execution, there is an API. All methods of this API are listed
here.

How to usethescript API:

Define your inputs and outputs in the Inputs/Outputs tab of the Properties view (appearing for the
selected Script component on double click). Write your script in the Script tab (in the same Properties
view). You can either do it in the text box or in a separate text editor by clicking on the button “Open
in Editor”. For interacting with RCE from ascript, thereisamodule called "RCE". To get an overview
of all RCE API methods, look at the script API detailed description The most important methods there
are reading inputs and writing outputs. For reading an input, call the method

‘RCE. read_i nput (String input_nane) ‘

or

‘RCE. read_i nput (String input_nane, default val ue) ‘

Y ou can write outputs within your script with

RCE. write_out put (String output_name, CutputDataType
val ue)

Thereby, the type (OutputDataType) of the value must fit the datatype of the output (as defined in the
tab Inputs/Outputs). File and Directory are represented by the absolute file paths.

Note

The module RCE usesis aready imported in the script during execution.

Examples:

If you like to double an incoming value (x is an input of type Integer and y an output of type Integer):

‘RCE. wite_output("y", RCE. read_input("x")*2) ‘

If you like to access an incoming file (f_inisaninput of type File):

‘file = open(RCE. read_i nput ("f_in"),"r") ‘

If you liketo send afileto an output (f_out is an output of type File):

absolute_file_path = /home/user_1/ny_file.txt
RCE. write_output("f_out", absolute_file_path)

If an output is not needed any more (e.g. you want to end an inner loop), you can close an output
using the command:

‘RCE. cl ose_out put (String out put _name) ‘

Example:

‘RCE. cl ose_out put (“y”) ‘

The following components will get the finished signal.

36



Script Component

If ascript failsbecause of someinvalid parameters sent by a Parametric Study or Optimizer component,
you can send a"not avalue" signal to your output(s). Thissignal indicatesthat the script failed because
of invalid parameters and did not fail at all. This signal isignored by most of the components, only
the Parametric Study and the Optimizer component handle this signal. For sending it, use

‘RCE. write_not_a_val ue_out put (String outputnane) ‘

For the other API methods refer to the example workflow "Script_with_all_API_methods.wf" from
the workflow exampl es project or to the script reference found below and in the user guide.

15.3.3. Script component states

The Script component is able to keep its state from one run to another. Use the API to write and
read state variables. The values are stored in a Python dictionary. They must be compatible with the
RCE data types. Script components of nested loops are reset if the nested loop has been terminated.
Resetting a script component in a nested |oop also resets its state map.

15.3.4. Input File Factory

The Input File Factory is an extension of the Script API that aims to write Python input parameter
files during a workflow run. To call the Input File Factory the user must first create a file
using the command file = RCE. create_input file(). Afterwards the user can add
variable declarations, comments or Python dictionaries by calling the previously created file (e.g.
file.add vari abl e( nane, val ue)). Finally,the stored data must be written to thefile system
by executing the command wite to file(fil enane), whereat the name of the file is the
given filename.

Note

It isnot allowed to enter arelative or absolute path for filename.

When the Input File Factory is called from an integrated tool, the file is written to the working
directorie's Input directory or to the tool directory depending on the user configuration. When a script
component calls the factory, the file is written to the temp directory. Use the RCE_write_output
command to forward the file in aworkflow.

Example Script:

Assume that the Script Component receives an input called "float" with value 1.0.

f = RCE.read_input("float") /'l read input
input _file = RCE.create_input_file() /|l create an enpty input file

input_file.add_coment("This is an exanple input file") /1 add comment

input_file.add_variable("float",f) /1 add float variable

input_file.add_dictionary("exanpleDict") Il create enpty dictionary

input_file.add_val ue_to_dictionary("exanplebDict","keyl","valuel") // add (key,value) pair to
di ctionary

input_file.add_val ue_to_dictionary("exanplebDict","key2", "val ue2")

file = input_file.wite_to_file("exanple.py") /Il wite input file to data managenent

To foward the filein aworkflow to an output called "file", use:

‘RCE.\Mite_output("file", file) \

The written file looks like this:

# This is an exanple input file
float = 1.0
exanpleDict = {'keyl': 'valuel', 'key2': 'value2'}

37



Script Component

15.4. Script APl Reference

M ethod Description

def RCE.close _all _outputs () Closes all outputs that are known in RCE

def RCE. cl ose_out put (nane) Closes the RCE output with the given name

def RCE.fail (reason) Fails the RCE component with the given reason

def RCE. get_execution_count ( ) Returns the current execution count of the RCE
component

def Returns al input names that have got a data value

RCE. get _i nput _nanes_wi th_datum

()

from RCE

def RCE. get output _nanes ( ) Returns the read names of all outputs from RCE

def RCE.get_state dict ( ) Returns the current state dictionary

def RCE.getallinputs () Gets adictionary with all inputs from RCE

def RCE.read_i nput (nane) Getsthevaluefor thegiveninput nameor anerror,
if theinput is not there (e.g. not required and it got
no value)

def RCE. r ead_i nput |Getsthe value for the given input name or returns

(nane, def aul t val ue)

the default valueif thereisno input connected and
the input not required

def RCE. read_st at e_vari abl e |Reads the given state variables value, if it exists,
(nane) else Noneisreturned
def RCE. read_st at e_vari abl e |Reads the given state variables value, if it exists,

(name, def aul t val ue)

else the default valueis returned and stored in the
dictionary

def RCE.wite_not_a val ue_out put
(nane)

Sets the given output to "not avalue' data type

def RCE.write_output (nane,val ue)

Sets the given value to the output "name" which
will be read from RCE

def RCE.wite_state variable
(name, val ue)

Writes avariable name in the dictionary for the
components state

def RCE.create_input _file ()

Creates and returns a file from the input file
factory

Syntax: file = RCE.create_input_file ()

def add_vari abl e (nane, val ue)

Addsthe variable declaration of name (i.e. name
=value) to theinput file

Syntax: file.add_variable(name, value)

def add_comment (val ue)

Adds acomment (i.e. # value) to the given file

Syntax: fileadd_comment(value)

def add_dictionary (nane)

Defines an empty Python dictionary with the
given name (i.e. name = {}) and adds it to the
input file. Note: The datatype of name hasto be
String.

Syntax: file.add_dictionary(name)

def add val ue to_dictionary
(dic, key, val ue)

Writes a (key,value) pair (i.e. dic[key] = value)
tothedictionary dic intotheinput file. Note: An

38



Script Component

Method

Description

empty dictionary with the given name dic hasto
be defined beforehand.

Syntax: file.add value to dictionary(dic, key,
value)

def wite_ to file (filenane)

Writes a previoudly created input file to the
temp, working or tool dir, depending on the user
configurations, and returnsthe pathto thefile. The
name of the written file is the given filename .
The component will fail with an error, if afile
with the given filename aready exists. Note:
The data type of filename has to be String.
An input file must first be created using the
RCE.create_input_file () method.

Syntax: filepath = filewrite_to_file(filename)

def wite to_file

(filenane, overwiteFile)

Writes a previously created input file to the
temp, working or tool dir, depending on the user
configurations, and returnsthe pathto thefile. The
name of the written file is the given filename .
The boolean parameter overwriteFile isoptional.
If set to True, an existing file with the given
filename will be overwritten. The default valueis
False . Note: The datatype of filename hasto be
String. Aninput file must first be created using
the RCE.create_input_file () method.

Syntax: filepath= filewrite to file(filename,
True)

39



16. Switch Component

16.1.

16.2.

16.3.

Synopsis

The Switch component forwards input values to one or more outputs. Whether or not an input is
forwarded to a specific output depends on user-specified conditions.

Rationale

The Switch component allows to direct the data flow within a workflow. It receives input values
(so-called data input) and forwards them to at least one output (so-called data output). It depends on
user-specified conditions to which output the values are forwarded. Each condition may evauate the
data input values as well as so-called condition inputs. These inputs can be defined but will not be
forwarded.

Usage

On the'Inputs/Outputs tab the user can define the datainputsto be forwarded. The default datatype of
adatainput isfloat. Change the datatype to the one you requireto forward. For each datainput several
dataoutputswill be generated automatically. The quantity depends on the number of conditionswhich
can be defined on the 'Condition' tab. For one condition, two outputs are created. One output isused to
forward the input value in case the condition is true, the other in case the condition is false. For more
than one condition there will be one output for each condition plus one output in case no condition
evaluatesto true. If several conditions evaluate to true, the default behavior isthat all input values are
written to al related outputs. Optionally the user can decide to write the values only to one related
output.

The naming scheme for the automatically created data outputs is as follows. <data i nput
nanme>_conditi on <condition_nunber> and <dat a_i nput _name> _no match. In
addition to the datainput, you can create condition inputs. They can only be used within the condition
and will therefore not be forwarded. The permissible data types are integer, float or boolean.

Properties
Component Properties: Switch
Inputs/Outputs Data Inputs

Name Data type Handling Constraint Add..

“ data_input Float Queue (consumed) Required

Condition Inputs

Name Data type Handling Constraint Add..
i condition_input_1 Float Queue (consumed) Required

« condition_input_2 Float Queue (consumed) Required

Data Outputs

Name Data type
= data_input_condition 1 Float
= data_input_condition 2 Float
= data_input_no match Float

40



Switch Component

Define your conditions on the 'Condition’ tab. A condition may contain data inputs, condition inputs,
numbers, relational operators and parentheses. Y ou can insert inputs and valid operators by hand or
you can select them from the drop down list on the right-hand side. Inputs can only be used within
conditions, if their data type is either integer, float or boolean. Only inputs of permissible data types
are shown in the drop down list. Y ou can add or remove conditions using the plus and minus buttons
on the left-hand side.

Y ou can control to which output the values will be written in case severa conditions hold true viathe
option 'Write values only for the first applicable condition'. If this option is set, the data inputs will
be forwarded only to the outputs related to the first applicable condition. Otherwise the values will
be written to al outputs related to conditions that evaluate to true. You can adjust the order of the
conditions via the arrow buttons on the left-hand side.

Properties
Component Properties: Switch
Conditions

[£] | Number # Conditio

pt
condition_input_1
ondition_input 2

1 data_inpu

o Data Inputs: ¢k
Workflow Data 2 data_inpu

Condition Inputs

[[J write output only for the first applicable condition

There are three options available that define the behavior of the Switch component within loops. In
the 'Loop Control' tab you can choose between:

* Never close outputs: Use this option if the switch component is used outside of aloop or if it is
not supposed to control the loop.

* Close outputs on condition number: Select a condition number from the provided drop down menu.
Use this option if the switch component is supposed to control a loop. All inputs of successive
components in the workflow which are connected to any output ending with _condi ti on
<condi ti on numrber > will be closed. Note that a component is finished if al of itsinputs are
closed.

» Close outputs if there is no match: Use this option if the switch component is supposed to control
aloop. All inputs of successive components in the workflow which are connected to the outputs
ending with _no mat ch will be closed. Note that a component is finished if all of itsinputs are
closed.

41



17. TIGL Viewer Component

17.1. Synopsis

TheTiGL Viewer component opensaTiGL Viewer within RCE during workflow execution to provide
anintegrated 3D viewer for CPACS geometries. In addition, it aso allows opening standard CAD file
formats like IGES, STEP and BREP.

Note
The TiGL Viewer component is currently only available on Windows operating systems.

17.2. Setup

TheTiGL Viewer isnot included in RCE anymore, but hasto be downloaded and installed separately.
Please visit https://dIr-sc.github.io/tigl/pages/downl oad.html in order to obtain acopy. Onceinstalled,
add the following lines to your configuration file and restart RCE:

"thirdPartylntegration”: {
"tiglViewer" : {
"bi naryPath" : "/path/to/tiglViewer.exe"
}

}

For additional configuration options for the TiGL Viewer refer to the configuration reference.

17.3. Usage

The TiGL Viewer component has no properties at all. It has a preconfigured input channel and a
preconfigured output channel “TiGL Viewer File".

During workflow execution, the view “TiGL Viewer” will be opened during the first component run.
In the following iterations the geometry shown in the view will be updated with the current input.

For more information about the TiGL Viewer software, please visit http://tigl.sourceforge.net/Doc/
tiglviewer.html.

42


https://dlr-sc.github.io/tigl/pages/download.html
http://tigl.sourceforge.net/Doc/tiglviewer.html
http://tigl.sourceforge.net/Doc/tiglviewer.html

18. XML Loader Component

18.1. Synopsis

The XML Loader component loads an XML file from a project within the workspace into the
workflow.

18.2. Usage

In the 'Fil€e' tab you can load an XML file into the component by clicking onthe "Load... " button and
navigating to the file of your choice. The content of the XML file will be stored within the workflow
and is shown in the text box below so you can quickly verify that you chose the correct file;

Note
Changing the file itself does not change the loaded content. Y ou have to load the file again to apply changes.

18.2.1. Writing values into an XML file

To map single valuesinto the XML dataset you have to add one input channel per value to be mapped.
If you regquire more complex or conditional mappings or transformations please refer to the XML
Merger component. In the "Add Input" dialog click "XPath choosing... " and navigate to an XML
file with the same structure as the one you referenced in the 'Fil€' tab, preferably the samefile. In the
appearing "XPath Variables Dialog" window navigate along the tree to the node you desire to change
and select it.

Note
Search for the XPathChooser help in the User Guide (3. Usage -> 2. Workflows -> 2.3 Workflow components) to
garner further information about the usage of XPaths.

When the component is executed the value being received on this input channel will be written to the

XPath location defined here. The resulting XML file with the inserted values is written to the output
"XML". You can check the origina and the outgoing XML filesin the workflow data browser.

18.2.2. Reading values from an XML file

Toread singlevaluesfrom an XML fileadd adynamic output. Inthe"Add Output" dialog click "X Path
choosing... " and navigate to an XML file with the same structure as the one you referenced in the
'File' tab, preferably the samefile. In the appearing "X Path Variables Dialog" window navigate along
the tree to the node you desire to read and select it. When the component is executed the content of
the node that the XPath pointsto is written into the output channel.

43



19. XML Merger Component

19.1. Synopsis

The XML Merger component merges the XML content of two inputs on the basis of user-defined
rules. These rules can be described in the XML or the XLST format and can either be sent to the
component as an input file or can be configured in the component's properties view.

19.2. Rationale

The basic functionality of the XML Merger component is to merge two XML data sets into one as
follows: Thereisa'main'-XML data set (input channel "XML"). The complete XSLT mapping will
be described regarding this XML dataset. All integrating parts of another XML data set (input channel
"XML tointegrate") will be described with a'document'-reference in XSLT mapping.

AsXSLT isastandard technology in thefield of information technology it isreferred to corresponding
literature available. As atechnical background, the approach used is based on Saxon processor. In the
mapping file (see example) a X SLT-constant INTEGRATING_INPUT refersto the XML to integrate
data channel.

Example: XSLT mapping:

<?xm version="1.0" encodi ng="UTF-8"?>
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or nt'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance" excl ude-resul t-prefixes="xsi">

<xsl :out put nethod="xnl" version="1.0" encodi ng="UTF-8" indent="yes"/>

<!--Define Variable for integrated CPACS-->
<xsl :vari abl e nane="cpacsl| nt egrat edDoc" sel ect=""'1NTEGRATI NG_| NPUT" "/ >

<! --Copy conplete Source to Result -->
<xsl:tenplate match="@ | node()">
<xsl : copy>
<xsl :apply-tenpl ates select="@ | node()"/>
</ xsl : copy>
</ xsl :tenpl at e>
<xsl :tenpl ate match="/cpacs/aircraft/configuration/trajectories/global">
<gl obal >
<Ref erenceTr aj ect or yUl D>
<xsl : val ue- of sel ect ="docunent ($cpacsl nt egrat edDoc)/ cpacs/ ai rcraft/confi guration/
trajectories/ gl obal/ReferenceTrajectoryU D'/ >
</ Ref er enceTr aj ect or yUl D>
<xsl : copy- of sel ect ="docunent ($cpacsl nt egrat edDoc)/ cpacs/aircraft/configuration/
trajectories/global/ReferenceTrajectory"/>
<xsl| : copy- of sel ect="/cpacs/aircraft/configuration/trajectories/global/*"/>
</ gl obal >
</ xsl :tenpl at e>
</ xsl : styl esheet >

Instead of using XSL T, the mapping rules can also be described in XML.

Example: XML mapping:
<?xm version="1.0" encodi ng="UTF-8"?>

<map: mappi ngs xm ns: map="http://wwmv. rcenvi ronnent . de/ 2015/ mappi ng" xm ns: xsl ="http://ww. w3. or g/ 1999/
XSL/ Tr ansf or mi' >

<nap: neppi ng>
<map: sour ce>/ cpacs/ vehi cl es/ ai rcraft/ nodel / ref erence/ ar ea</ map: sour ce>
<map: t arget >/t ool | nput/ dat a/ var 1</ map: t ar get >

</ map: mappi ng>

<map: meppi ng node="del ete" >




XML Merger Component

19.3.

<map: sour ce>/ t ool Qut put/ dat a/resul t 1</ map: sour ce>
<map: t ar get >/ cpacs/ vehi cl es/ ai rcraft/ nodel / r ef er ence/ ar ea</ map: t ar get >
</ map: mappi ng>

</ map: mappi ngs>

RCE automatically determines which format is used based on the filename endings, so the mapping
file name must end with ".xslt" or ".xml", respectively.

Usage

Onthe“Mapping” tab you can choose whether you want to send the mapping file to the XML Merger
component via an input (in this case, the component has an input "Mapping file", to which the file
has to be sent during the workflow) or if you want to load a mapping file into the component. In the
second case, the content of the mapping file will be stored within the workflow, which will lead to
a larger workflow file. Editing the mapping content allows you to edit and store the corresponding
content in the workflow (the originally loaded fileitself will not be changed).

Y ou can define the scheduling of the static input channels on the tab “ Inputs/Outputs’. Y ou are also
able to add dynamic input or output channels here. Thus it is possible to map single values into the
XML dataset via XPATH declaration. Moreover, you can select single valuesin order to write them
in an output channel.

Note
Search for the X PathChooser help in the User Guide (3. Usage -> 2. Workflows -> 2.3 Workflow components) to
garner further information about the usage of XPaths.

45



20. XML Values Component

20.1. Synopsis

The XML Values Component is capable of reading and writing values within an XML file. These
values are declared via dynamic in- and outputs.

20.2. Usage

Y ou can add dynamic inputs to map single valuesinto the XML dataset. Using the X Path declaration,
the exact position for the valuein the XML file can be chosen. Non-existent elements within the X Path
declaration will be generated. The output "XML" contains the changed XML file. Furthermore, you
can add additional outputs to select single values from the XML dataset to write them to an output
channel.

Note

Search for the XPathChooser help in the User Guide (3. Usage -> 2. Workflows -> 2.3 Workflow components) to
gain further information about the usage of XPaths.

46



