RCE User Guide
Build 10.2.2.0202102241741_SNAPSHOT

Table of Contents

L P O A0R e e 1
Lo ABSITBCE et 1
1.2, INteNded AUGIENCE ...ttt e e e e e et e e e e e eees 1
1.3, License INFOrMIBLIONiieieieiei et 1
1.4, Compatible Operating SYStEIMSiiiiiiiieiii e 1

1.4.1. Support of 32 Bit Operating SYyStEMSc.uuieiiiiiiieeeiie e 2
1.4.2. KNOWN ISSUESiiiiiieieie ettt et eea s 2
1.4.2.1. KDE on Red Hat Enterprise LiNUX 7cccuuieieiiinieiiiiiieeeiieeeenen 2
1.4.2.2. KDE With OXYQEN ...oiiiiiiiei e 2
1.4.2.3. Jython scripts are executed sequentiallyccoveeveviiieiiiineeiiiien. 2
1.4.2.4. 32-bit Java is NOt SUPPOITEDcocvuunieiiiiiieeieie e 2

2 GBI ettt et et 3

2.1, INStall@tion ON LINUX ..cooeveneeiiieeiii ettt e et e e et e eeenaa e eees 3
2. 1.0 PrErQQUISITESeeeeiieeeeii ettt ettt et 3
2.1.2. Obtaining the SIgNiNg K@Y ... 3
213 INSEATBIION ...t 4

2.1.3.1. Installing from the Package Repository (recommended for Debian/
UBUNEUW/VINE) oot 5
2.1.3.2. Ingtalation of the .deb/.rpm Package (recommended for CentOS/
Red Hat/SUSE, alternative for Debian/Ubuntu/Mint)ccoevvivieviiinnenens 5
2.1.3.3. Installation from the .zip File (alternative for all distributions) 6
2.1.4. Starting RCE @s @ GUI ClIeNtcoouuuiiiiiiiieiii e 6
2.1.5. Starting a Non-GUI ("Headless") INStancec.vuveeievinieiiiiineecciieeeeeie 7
2.1.6. Installation as a Daemon 0N & LinUX SEIVEYcooeeiiiiieiiiiiieeeiiiieeeeeiiee 7
2.1.6.1. Installation and Daemon Managementccooeevvviineeeiiiineeeiiineeeens 7
2.1.6.2. DaemMON ConfiguIalionuieeeuriiiiiiiie e 8

2.2, CONFIQUIBLTON ...ttt et e et e ettt e et e e e eaa s 8
2.2.1. Configuration Locations and FileSocoiiiiiiiiiiiiiei e 8
2.2.2. Configuration ParameterSocveeuuneiiiiiiee e 8
2.2.3. Configuration Uliiiiiiiiieiii e 16

2.2.3.1. Remote Access: SSH account configurationccceveeeeiinneeenns 16
2.2.3.2. Mail: SMTP server configurationcceeviieiiiinneeiiineeecenennn. 17
2.2.4. Importing authorization data without GUI aCCeSSoveveviiiieiiiiiieiennnn, 17
2.2.4.1. Importing or deleting RCE authorization group keys.............c.c........ 17
2.2.4.2. Importing SSH Uplink passwords or keyfile passphrases.................. 18
2.2.4.3. Importing SSH Remote Access passwords or keyfile passphrases....... 18

I U L= o PP PTUPPIN 19
3.1. Graphical USer INTEIfaCEoceeeeieeei e 19
32, WOTKFIOWS ..t 21

2.1 RAIONAIE ..t 22
3.2.2. GELLING SEAMEH ..eeeee e 22
3.2.3. WOIKFIOW COMPONENES ... eeeiiie ettt e 22
3.2.4. Coupling WOrkflow COmMPONENESueieiriiiiiiiiie e 23
3.2.5. Execution Scheduling of Workflow Components............cccceveeviivnieniennnnn. 24
3.2.6. (NESLEH) LOOPS -.evvneeiitiie ettt ettt e s 25
3.2.7. FAUIt-TOIEraNt LOOPS ...cevvvneeeeiiiee ettt sttt e e e 27
3.2.8. Manual Tool Result VErifiCationoveeeiiiieiiiiiieeiii e 27

3.3, COMMEANGS ...ttt et ettt et e e ettt e et e e e et e e e ente e eeenes 28
3.3.1. Command Line Parametersoceeuuniiiiiiieeeeii et 28
3.3.2. Profile SAection Ul ... 29
3.3.3. Command Shellooiiiiii 30

3.3.3.1. Configuration Placeholder Value Filescooeeviiiiiiiiiiiiiiii, 34

3.4. Integration of EXternal TOOISoiiiiiiiiiiiii e 35
341, BASIC CONCEPES .evvtneeeeitiie ettt e e et e et e e e e e e e s 35
3.4.2. Directory Structure for Integrated TOOISveiiiiiiiiiiiiieeei e 35

RCE User Guide

3.4.3. Copying of Integrated TOOISovviiiiiiiiicii e 37
3.4.3.1. Tool Execution RELUrN COOESvveviviiiieiiiiiieeceiie e 37
3.4.4. Integration Of CPACS TOOIScvvuiiiii i e e 37
3.4.4.1. Additional concepts of CPACS Tool Integrationcccoeevvvneannn. 37
3.4.4.2. Integrate a CPACS Taool into aClient Instanceccoocvvevevvveennnnnns 40

3.4.4.3. Integrate a CPACS Tool into a Server Instance in Headless Mode...... 42
3.4.5. Workflows as Components (Experimental)cccovvviiiiiiiiciineeeeeennn, 42
3.4.5.1. Integrating @ WOrkflOwcoeeviiiiiiiiiiii e, 43
3.4.5.2. Executing an Integrated WOorkflowccoooviiiiiiiiiiniiineee, 45
3.4.5.3. Limitations, Caveats, and FAQcooovviiiiiiiiiii e 46
3.5. Tool publishing and authOriZationcccceuieiiieeii e 47
3.5.1. Managing authorization groUPScccuueiiiieiieeiii e e e e e e e e 47
3.5.2. Publishing tools on the command consoleccocoviiiiiii i, 48
3.6. CoNNECtiNg RCE INSIANCESuuiiiiiicii e e e e e e e e e et e e e e e eaa s 48
3.6.1. RCE NetWOrk CONNECLIONScuuuiiiiiiiieiiiii e e e 49
3.6.2. UpPlinK CONNECLIONS ... ccvuiiiii e e e e eeas 50
3.6.2.1. Configuring an RCE instance asan Uplink relayccoovevinennnnn. 50

3.6.2.2. Configuring an RCE instance as an Uplink client or gateway (in

LU 4370 o) 50
3.6.2.3. Configuring an Uplink Gateway in non-GUI mode..................cc.u.... 50
3.6.2.4. TOOl PUBIISNING ...ccvviiiiiii e 51
3.6.2.5. Possibly surprising behavior (or non-behavior)coooceeeni. 51
3.6.2.6. Known issueg/limitations of the current release............cccceeveevivnnnnnn. 51
3.6.3. Example of a Cross-Organization NetwWorkccccovvviiiieiiinciiiieeiieeeennn, 51
3.6.4. SSH Remote ACCESS CONNECHIONSuvunieiiiiiieeieii e eeiis e et e e e e eeeaens 52
3.6.4.1. Configuring an RCE instance as an SSH serverc.cccevvvvvneennnne. 53
3.6.4.2. Configuring an RCE instance asan SSH clientccooeevveeennnn. 53
3.7. REMOtE WOIKFIOW ACCESSvuiieiiiiiiiee ettt e et eeeeeas 53
3.7.1. Setting up the Workflow Execution Example/Templatecoccevveeennneen. 54
3.7.2. Building Y our Own Remote Access WOrkflowccooveviieiiiiiinncinneenn, 55
A, SCHPt APl REFEIENCE ...vuiiiiiiii e e e e e e e e e e eaens 57

List of Figures

2.1. Configuration tool for SSH account and SMTP server configurationcccceeeevevennnn. 16
3.1. Workbench with different views and the workflow editor openedcccooveviiiinnenennn. 19
3.2. CONNECLION EQITOrceeeeiieeeet et e e 20
3.3 NEIWOIK VIBW ..ttt e e e 20
3.4, WOrKflOW Data BrOWSENcciiiiieiiiii et 21
3.5, WOTKFIOW CONSOIE ...ttt e e e 21
3.6. Profile SEIECHiON ULuiiiiii et 30
3.7. Run process of an user-integrated CPACS TOO!coevuuiiiiiiiiieeiiie e 40
3.8. Workflow for determining the optimal input for the function f_c(X).ccceiveviiiiienennnn, 42
3.9. Workflow from the above figure prepared for integration as acomponent.c....... 44
3.10. EXample RCE NEIWOTKcoeeiiiiiiiii et 52

List of Tables

2.1 LinuxX installation OPLIONSccceuueiiiii ettt ettt 4
2.2, BN Al et 9
2.3. "backgroundMONItOriNG"eiieii et 10
24, TNEIWOTK" L. 10
2.5, " COMPONENESELLINGS" ...t eeeetti ettt ettt ettt ettt ettt et e e e e et et e et e e enaa e eennes 11
2.6. "thirdPartyINEEOratiON™ ettt et 11
T SO IV 12
2.8. Possible roles for SSH aCCOUNESc.uuiiiiiii e 13
2.9, UPIINK" s 14
2.10. "SSHREMOLEACCESS" ... ittt ettt e e e e 15
N I 141101 Y PP PTUPTPP 15
3.1. Data Type ConVersion Tableuiiiiiii e 24
3.2, INPULS OF OPLIMIZETeeieee ettt ettt e ettt e ettt e e e et e e e ena e eees 25
3.3. OULPULS OF OPLIMIZENeeeteeeeei ettt ettt ettt ettt e et eeeba s 26
3.4. Inputs of Design Of EXPEITMENESccouuiiiiiii e 26
3.5. Outputs of Design Of EXPEITMENScceeurieiiiiiiee ittt e e e e eeai e eees 26
3.6. INPULS Of Parametric SEULYccoeuuniiiiiii e et eni e eees 26
3.7. Outputs Of Parametric SEUAYcoeeueueiiiiie e 26
3.8. INPULS OF CONMVEIGEY ... ittt e e et e et e et eeeenaes 26
3.9. OULPULS OF CONVEIGET ... eeeiii ettt e ettt e e et ettt et et et et e e e en e e e ane e e eenens 27
3.10. Command line arguments fOr RCEooiiiiiiiiiiii e 28
311, ShEll COMMANGS ... ettt ettt e et e e e 31
3.12. Components and their configuration placeholdersoooeiiiiiiieiiiiniei e 35
3.13. Connection types - FEAEUIE MELITXcceurueiiiii et e ettt e et e et eeer e eees 49

Chapter 1. Preface

This chapter gives an introduction to RCE.

1.1. Abstract

RCE (Remote Component Environment) is an open source software that helps engineers, scientists
and othersto create, manage and execute complex cal culation and simulation workflows. A workflow
in RCE consists of components with predefined inputs and outputs connected to each other. A
component can be asimulation tool, atool for dataaccess, or auser-defined script. Connections define
which data flows from one component to another. There are predefined components with common
functionalities, like an optimizer or a cluster component. Additionally, users can integrate their own
tools. RCE instances can be connected with each other. Components can be executed locally or on
remote instances of RCE (if the component is configured to alow this). Using these building blocks,
use cases for complex distributed applications can be solved with RCE.

1.2. Intended Audience

Theintended audience of thisdocument consists of engineers, scientists, and everybody elseinterested
in devel oping automated workflows with RCE.

1.3. License Information

RCE is published under the Eclipse Public Licence (EPL) 1.0. It is based on Eclipse RCP 4.8.0
(Photon), which is also published under the Eclipse Public Licence (EPL) 1.0. RCE also makes use
of various libraries which may not be covered by the EPL; for detailed information, see the file
"THIRD_PARTY" in the root folder of an RCE installation. (To review this file without installing
RCE, open the RCE release .zip file.)

For downloads and further information, please visit https.//rcenvironment.de/.

1.4. Compatible Operating Systems

RCE releases are provided for Windows and Linux. It isregularly tested on
* Windows 7

* Windows 10

* Windows Server 2016

* CentOS7

* Debian9

e SUSE Linux Enterprise Desktop ("SLED") 12 SP2

https://rcenvironment.de/

Preface

1.4.1.

1.4.2.

* Ubuntu 18.04LTS

Support of 32 Bit Operating Systems

Starting with release 8.0.0, RCE is only shipped for 64 bit systems. If you still require 32 bit packages,
you can continue to use previous RCE releases, but there will be no standard feature or bugfix updates
for them.

Known Issues

1.4.2.1. KDE on Red Hat Enterprise Linux 7

On Red Hat Enterprise Linux 7 with KDE 4, RCE (like any other Eclipse-based application) can cause
asegmentation fault at startup. If you encounter such an issue, you can try choosing adifferent GTK2
theme:

1. Open the System Settings application (systemsettings).
2. Goto Application Appearance
3. Open GTK page

4. Switch the GTK2 theme to "Raleigh” or "Adwaita" and click on Apply

1.4.2.2. KDE with Oxygen

On Unix Systems using KDE as desktop environment and Oxygen as theme it can happen that RCE
crashes when certain GUI elements are shown. It is a known issue in the theme Oxygen and happens
on other Eclipse-based applications as well. If you encounter such an issue, please choose a different
theme like "Raleigh” or "Adwaita’.

1.4.2.3. Jython scripts are executed sequentially

The Script component can use Jython for the evaluation of scripts and the pre- and postprocessing of
integrated tool s always uses Jython. Dueto aknown bug in the Jython implementation it isnot possible
to execute several Jython instances in parallel. Therefore, the execution will be done sequentialy. If
several Script components should be executed in parallel, Python should be used instead.

1.4.2.4. 32-bit Java is not supported

Running RCE with a 32-bit Java Runtime Environment doesn't work. On some operating systems an
error dialog will be displayed in this case, on some other systems nothing will happen at all. Therefore,
always make sure a 64-bit Java Runtime Environment is used to run RCE.

Chapter 2. Setup

This section describes the installation and configuration of RCE.

2.1. Installation on Linux

2.1.1.

2.1.2.

Prerequisites

Torun RCE onasystem, the only prerequisiteisan installed Java Runtime Environment (JRE), version
8ul61 or above. If you do not already have one on your machine, use your system's package manager
to install it; the most common choice is the OpenJDK JRE.

Note

Some pre-installed components of RCE have additional dependencies. Please refer to Section 2.3 (Workflow
Components) for more details.

Obtaining the Signing Key

Any software can be tampered with by a malicious attacker. For RCE, the consequences of such
tampering may be worse than with other software, since its intended behavior aready includes
executing arbitrary processes, opening outgoing network connections, and listening for incoming ones.
One common safeguard against such tampering is software signing. If the developers sign a software
artifact, e.g., a zip-archive or an executable file, the user can verify the signature. This verification
confirms that the artifact downloaded onto their machine is identical to the artifact prepared by the
software devel opers and has not been tampered with.

In order to sign a software artifact, the developers combine the artifact and a so-called signing key
to form a signature file. The user can then verify the signature using the artifact, the signature file,
and a part of the signing key that can only be used for verification, but not for signing. A technical
introduction to the minutiae of software signing is out of the scope of this user guide and we refer to
the literature for more information on this topic.

If you would like to install RCE by using a package repository (see below), you need to obtain the
signing key before doing so. For other methods of installation, namely manual installation of apackage
or unpacking a .zip-file, verifying the signature of the downloaded artifact is optional. Despite this,
we strongly recommend doing so.

In order to verify the signature of a software, you require

« theartifact that you want to verify (in this case a .zip-, .deb-, or .rpm-file)
 asignature file provided by the signer (in this case provided by us)

« the verification part of the signing key.

How to obtain the former two items depends on your chosen method of installation (see Section 2.1.3
for more details). The latter item, i.e., the signing key, is not available via https.//rcenvironment.de
or linked to in this user guide on purpose: Recall that the purpose of software signing is to protect
against compromised communication channels between devel opers and users. Thus, if the artifact, the
signatures, and the signing key were available at the same location, an attacker that takes control over
that location could easily forge al three components.

https://rcenvironment.de

Setup

2.1.3.

Onecommon way to distribute such keyfilesisviaso-called public keyservers. We have thus published
the signing key for RCE at the SKS-keyservers (https://sks-keyservers.net/). In case you are unable
to access those keyservers, we have furthermore published the keyfile via https://github.com in the
repository called r ce- si gni ng owned by the organization r cenvi r onnment . Please verify the
integrity of the obtained keyfile by checking itsfingerprint against the one published by usviaatrusted
channel (e.g., the RCE Twitter account). We omit giving direct links as well as the key's fingerprint
here on purpose. This dightly decreases the chance of attackers directing you toward aforged key.

The precise steps required for signature verification differ from system to system. Commonly, key
retrieval and verification is handled by either your package manager or by gpg, which should be

pre-installed on your system or available via the package manager of your choice. Please refer to its
documentation in order to verify your downloaded software artifact.

Installation

On Linux, there are up to three installation options, depending on your distribution:

1. Installing RCE from a .deb package via a package manager (only on .deb-based systems such as
Debian, Ubuntu, or Mint),

2. installing RCE from a.deb- or .rpm-package (on .deb- and .rpm-based systems, respectively), or
3. extracting RCE from azip file (traditionally used by earlier versions of RCE).

If you are using a .deb-based distribution, we strongly recommend installing RCE via your package
manager of choice. On .rpm-based systems, we instead recommend using the provided .rpm-package,
asthisautomatically installs RCE into the proper system locations. It furthermore allowsyouto cleanly

manage your installation via the package manager.

The following table compares these options:

Table 2.1. Linux installation options

Installation |Multi- Daemon |Installing [File Updating to a|Verifying |Registers
type user operation |multiple |system |new version digital start
operation |(system |versions |location signatures menu
supported|service) |simultaneously entry and
supported icon

Using the|yes yes no [usr/ Using the|automatic|yes
package shar e/ |distribution’'s
repository rce update manager
(.deb-based (automatic or
systems manual)
only)
Manual yes yes no [usr/ Manual manua |yes
installation share/ |download and
of rce install a newer
the.deb/.rpm package
package
Unpacking |no no yes (anywhere)Use "Help -|manual |no
the .zipfile > Check for

Updates" in

RCE -or- delete

the old

installation

directory and

https://sks-keyservers.net/
https://github.com

Setup

Installation |Multi- Daemon |Installing [File Updating to a|Verifying |Registers
type user operation |multiple |system |new version digital start
operation |(system |versions |location signatures menu
supported|service) |simultanepusly entry and
supported icon
manually
download and
unpack a newer
zipfile

2.1.3.1. Installing from the Package Repository (recommended for
Debian/Ubuntu/Mint)

To register the RCE .deb package repository in your system, you first have to add the RCE signing key
to your package manager. Popular choices for such a package manager are Synaptic and apt, which
feature a graphical user interface and a command-line interface, respectively. Please refer to Section
2.2 for detailson how to obtain thiskey. The stepsrequired to import the signing key into your package
manager differ greatly based on the used package manager. Please refer to its documentation for more
information on this.

Once you have imported the signing key into your package manager, please add the following
repository toitslist of repositories:

‘deb https://software. dl r.de/ updat es/ rce/ 10. x/ product s/ st andar d/ r el eases/ | at est/ deb/ / ‘
When using Synaptic, you can add this repository by opening

‘Settings -> Repositories -> Additional Repositories / CQther Sources (or simlar) -> Add New... ‘

When using apt as your package manager, you can add the repository by executing the following
command in aterminal:

sudo echo "deb https://software.dlr.de/updates/rce/10. x/ product s/ standard/rel eases/| atest/deb/ /"
>/ etc/apt/sources.list.d/dlr_rce_10_rel eases.|ist

Although this command is split across multiple lines in this guide, it must be executed as a single
line. Further, this command requires superuser-rights and will ask you for your sudo-password. Please
contact your system administrator if you do not have such a password.

After adding the repository to your package manager, refresh the list of available software (e.g., via
clicking a Refresh- or Reload-button or via the console command sudo apt - get updat e) and
install RCE like any other software (e.g., via selecting it in the list of available software in Synaptic
or viathe console command sudo apt-get install rce).

Once you have installed RCE using either of these approaches, any RCE 10.x upgrade will
automatically show up viathe update mechanism of your operating system. Depending on the upgrade
settings of your system, they may be installed automatically, or be presented to you for selection.
Although technically possible, RCE 10.x will not auto-upgrade to 11.x (or higher) to maintain
compatibility within networks of RCE 10.x instances. You will need to manualy install the 11.x
repository location in order to upgrade.

2.1.3.2. Installation of the .deb/.rpm Package (recommended for
CentOS/Red Hat/SUSE, alternative for Debian/Ubuntu/Mint)

Toinstall the .deb/.rpm file manually, download the latest version from either

‘htt ps://software. dlr.de/ updates/rce/ 10. x/ product s/ st andar d/ r el eases/ | at est/ deb/

or from

Setup

‘htt ps://software. dl r.de/ updates/rce/ 10. x/ product s/ st andar d/ r el eases/ | atest/rpml ‘

Use the former package on .deb-based systems such as Debian, Ubuntu, or Mint and use the latter
package on .rpm-based systems such as Red Hat or CentOS.

You can install the package using the graphical package management tools of your distribution
(double-clicking the .deb/.rpm-file should start them), or by runningyum i nst al I <fi | enane>
(Red Hat, CentOS, ...), zypper install <filenane> (openSUSE), or sudo dpkg -i
<fi | enanme> (Debian, Ubuntu, Mint, ...) from aterminal.

To upgrade an existing installation, simply install the newer package. The package manager will detect
the upgrade and handle it properly.

2.1.3.3. Installation from the .zip File (alternative for all
distributions)

2.1.4.

If none of the previous installation options fits your needs, you can also extract RCE from a zip file
downloaded from

‘htt ps://software. dlr.de/ updates/rce/ 10. x/ product s/ st andar d/ r el eases/ | at est/ zi p/ ‘

* If you prefer graphical tools, double-click the .zip file to open it with your distribution’s archive
manager. Extract it to alocation of your choice and open that location in your file-system explorer.
Typically, double-clicking the "rce" executable will work out of the box and start RCE. If this does
not happen, right-click the executable, open its "properties’ section (or similar), and look for an
option to mark it as executable. Confirm the dial og, then double-click it again.

* If you prefer using the command line, use the unzi p command to extract the zip file to alocation
of your choice. In the location where you unpacked the files to, you can usually simply enter

.lrce ‘

to start RCE. In some cases, you may first need to make it executable using the command

chnod +x rce ‘

Note

The path to your installation location must not contain any colons to avoid Java Virtual Machine errors when
starting RCE.

Starting RCE as a GUI Client

Once your RCE instance has started, you can open the configuration file with the menu option
"Configuration > Open Configuration File". Edit the file, save it, and then restart RCE using the
"File > Restart" menu option to apply the changes. There are configuration templates and other
information available viathe " Configuration > Open Configuration Information™ option. The available
configuration settings are described in the configuration chapter.

Note

On Ubuntu, the Ubuntu overlay scrollbars can sometimes lead to problems with the RCE GUI. To avoid
these problems, you can start RCE from a terminal with env LI BOVERLAY_SCROLLBAR=0 ./rce
to disable the overlay scrollbars for RCE. Alternatively, if you want to disable the overlay scrollbars

Setup

2.1.5.

2.1.6.

permanently for al programs, execute echo "export LI BOVERLAY_SCROLLBAR=0" > /etc/X11/
Xsessi on. d/ 80over | ayscrol | bar s asasuperuser and then restart your computer.

Starting a Non-GUI ("Headless") Instance

RCE can aso be run from the command line without a graphical user interface (which is called
"headless" mode), which uses less system resources and is therefore recommended when the GUI is
not needed.

To run aheadless RCE instance, open atermina and run the command

‘rce --headl ess -consol e ‘

While RCE is running, you can enter various console commands described in Section 3.3,
“Commands’; note that you need to prefix all RCE commands with "rce" here. To perform aclean
shutdown, for example, typer ce st op and press enter.

Installation as a Daemon on a Linux Server

For ad-hoc or temporary RCE network setups, running a headless RCE from the command line is
perfectly fine. For more permanent installations, however, we recommend installing RCE as a system
daemon instead. This has the advantage that RCE automatically shuts down when the server is shut
down, and automatically restarts when the server does.

2.1.6.1. Installation and Daemon Management

Executing the following steps will install RCE as daemon. An RCE daemon will start automatically
on system boot and stop before system shutdown.

The recommended (and supported) way to install a Linux daemon is to install RCE from a .deb
or .rpm package, or (equivalently) installing it from the APT repository. While installing a daemon
from the .zip file distribution can be made to work, it creates unnecessary complications regarding
installation paths and file permissions. Asregistering a daemon requiresroot privileges anyway, there
should be no reason to use the .zip file; if you have a compelling use case for this, please contact the
RCEteamatr ce@ll r. de.

Once RCE is properly installed, registering it as a daemon is very simple. A command named r ce-
daenon isprovided to control thewhole daemon life cycle. The only manual step you need to perform
before using that command is creating a user account that the daemon will run under. For now, this
account has to be named r ce- daenon; use your distribution's console commands or GUI tools to
add it. (Please note that this account needs to have a home directory to hold the daemon's profile
directory.) Future RCE versions will make this account name customizable.

Note

Asof RCE 10, the daemon wrapper still uses the System V approach. Migration to systemd is planned for RCE 11.

Once this user account is created, you can use the following commands to manage the daemon
installation:

* rce-daenon install -ingalsand starts the daemon instance
* rce-daenon uninstall - stopsand uninstalls the daemon instance; the profile directory
remains unchanged

e rce-daenon start /rce-daenon stop/rce-daenon restart - standard daemon
controls

Setup

e rce-daenon | ocat e - printsthelocation of the daemon's RCE instance's profile directory and
relevant files

e rce-daenon st at us - displaysif the RCE daemon is currently running or not

2.1.6.2. Daemon Configuration

After installation, the daemon instance will be started automatically. This will create a default
configuration file if it does not exist yet.

To configure the daemon instance, user ce- daenon | ocat e tofind itsconfiguration file, edit and
saveit, and then user ce- daenon rest art to apply the new configuration.

For importing SSH credentials and authorization group keys into a daemon, please refer to section
Section 2.2.4, “Importing authorization data without GUI access’. As of RCE 10, file-based imports
are only processed on startup, so arestart is required for this, too.

Note

The need to restart the daemon is temporary; future versions of RCE will apply configuration changes as soon as
configuration files are changed or new import files are placed in the respective folders.

2.2. Configuration

2.2.1.

2.2.2.

This section describesthe configuration of RCE. Configuration isdonewithin one single configuration
file. It is located in the profile directory. From the graphical user interface, you can easily access it
from the tool bar or the Configuration menu.

Note
To apply changes you need to restart RCE.

Theformat of the configuration file is JSON. See http://www.json.org/ for the format definition. Also
refer to the example configuration filesin the installation data directory.

Configuration Locations and Files

Starting with RCE 6.0.0, all user datais strictly separated from the RCE installation itself. Each set of
user datais contained in a so-called "profile". Each profile defines what is called an RCE "instance".
Each profile (and therefore, each instance) belongsto exactly one user, and each user can have multiple
profiles. The default profile is located within the user's "home" directory ("/home/<user id>/" on
Linux), in the ".rce/default" sub-folder.

Note

Note that ".rce" is a hidden directory; you may need to set operating-specific options to see hidden files and
directories.

All manual configuration takes place in the profil€'s central configuration file, "configuration.json”.
As of RCE 9.0.0, most configuration settings only take effect on startup, so you need to restart RCE
after editing it. (Thiswill be changed in afuture release.) This appliesto all types of installations.

Configuration Parameters

Configuration parameters are grouped within the configuration file. The configuration parameters are
listed below. There is one list per JSON configuration group. Some example snippets are given as

http://www.json.org/

Setup

well. The complete example configurations can be found in the installation data directory in the sub-
directory examples/configuration or by opening the configuration information in RCE.

Table2.2. " general"

Configuration key

Comment

Default
value

instanceName

The name of the instance that will be shown to all users
in the RCE network. The following placeholders can be
used within the instance name:

${hostName} is resolved to the local system's host
name.

${ systemUser} isresolved to the user account name.

${ profileName} is resolved to the last part of the
current profile'sfile system path.

« $Hversion} isresolved to the build id.
» ${javaVersion} isresolved to the JRE version number.

Example: "Default instance started by \"${ systemUser}\"
on ${ hostName}".

"<unnamed
instance>"

isworkflowHost

If set to true, the local instance can be used as aworkflow
host by other RCE instances. |.e., theworkflow controller
can be set to thisinstance and the workflow datais stored
there aswell.

false

isRelay

If set to true, the local node will merge al connected
nodes into a single network, and forward messages
between them. This behaviour is transitive; if a relay
node connects to another relay node, both networks will
effectively mergeinto one.

If set to false (the default value), the local node can
connect to multiple networks at once without causing
them to merge.

false

tempDirectory

Can be used to override the default path where RCE
stores temporary files. Useful if there is little space in
the default temp file location. Must be an absolute path
to an existing directory, and the path must not contain
spaces (to prevent problems with tools accessing such
directories). The placeholder ${systemUser} can be used
for path construction, e.g. "/tmp/custom-temp-directory/
${ systemUser}"

An"rce-
temp"
subdirectory
within the
user or
system temp
directory.

enableDeprecatednputTab

If set to true the tab 'Inputs is enabled again in the
properties view of running workflows. It is disabled
by default due to robustness and memory issues. It is
recommended to use the 'Workflow Data Browser' to see
inputs received and outputs sent.

false

Setup

Table 2.3. " backgroundM onitoring"

Configuration key Comment Default
value
enabledids Comma-separated list of identifiers referring to certain
kind of monitoring data that should be logged
continuously in the background. Currently, only
'basic_system_data is supported.
interval Seconds Logging interval 10
Table2.4." network"
Configuration key Comment Default
value

reguestTimeoutM sec

The timeout (in milliseconds) for network requests that
are made by the local node. If this time expires before a
response is received, the request fails.

40000

forwardingTimeout Msec

The timeout (in milliseconds) for network requests that
are forwarded by the local node on behalf of another
node. If this time expires before a response is received,
an error response is sent back to the node that made the
request.

35000

connections

A map of al connections that the local instance tries to
establish on startup. This alows the local instance to act
as a client. For each connection a unique identifier (id)
must be given.

{} @n
empty map
in JSON
format)

connectiong/[id]/host

IP address of the host to connect to. Host names and | Pv4
addresses are permitted.

connectiong/[id]/port

Port number of the remote RCE instance.

connectiong/[id]/
connectOnStartup

If set to true, the connection is immediately established
on startup.

true

connectiong/[id]/
autoRetrylnitial Delay

The initial delay, in seconds, to wait after a failed or
broken connection before a reconnect attempt is made.
This configuration must be present to enable the auto-
reconnect feature.

connectiong/[id]/
autoRetryDelayMultiplier

A decima-point value >= 1 that the delay time is
multiplied with after each consecutive connection failure.
This provides an "exponential backoff" feature that
reduces the frequency of connection attempts over time.
This configuration must be present to enable the auto-
reconnect feature.

connectiong/[id]/
autoRetryMaximumDelay

Defines an upper limit for the delay time, even when
applying the multiplier would create a higher value.
This can be used to maintain a minimum frequency
for retrying the connection. This configuration must be
present to enabl e the auto-reconnect feature.

serverPorts

A map of al server portsthat the local instance registers
for other instances to connect to. This allows the local
instance to act as a server. For each server port a unique
identifier (id) must be given.

{} @@n
empty map
in JSON
format)

serverPortg/[id]/ip

IP address to which the local instance should be bound.

serverPortg/[id]/port

Port number to which other instances connect to.

10

Setup

Configuration key Comment Default
value
ipFilter Allows to limit the incoming connections to a set of IP|-
addresses.
ipFilter/enabled If set to true, theip filter active. false
ipFilter/allowedl Ps List of IP addresses, which are allowed to connect to the|[] (an empty
instance. listin JSON
format)
Note

IMPORTANT: When setting up anetwork of RCE instances, keep in mind that the RCE network trafficiscurrently
not encrypted. This means that it is not secure to expose RCE server ports to untrusted networks like the internet.
When setting up RCE connections between different locations, make sure that they either connect across a secure
network (e.g. your institution's internal network), or that the connection is secured by other means, like SSH
tunneling or a VPN. Alternatively, you can set up an uplink connection in RCE instead of the standard RCE
connections.

Network Server Sample:

"network" : {

"serverPorts" : {
"relayPort1" : {

"ip" : "127.0.0.
“port" : 21000
}

}

"ipFilter" : {
"enabl ed" : false,
"al | onedl Ps" : [

"127.0.0.1",
"127.0.0.2"
1
}
}

1,

Network Client Sample:

“network" : {
"connections" : {
"exanpl eConnecti onl" : {

“host" : "127.0.0.1",
"port" : 21000,
"connect OnStartup": fal se,
“autoRetrylnitial Del ay" : 5,
"aut oRet r yMaxi munDel ay" : 300,
"aut oRetryDel ayMul tiplier" : 1.5

Table 2.5. " component Settings'

Configuration key Comment Default
value

dercenvironment. cluster | Configuration of the cluster workflow component. -

de.rcenvironment. cluster/| Maximum number of channels, which are allowed to be|8
maxChannels opened in parallel to the cluster server.

Table 2.6. " thirdPartylntegration”

Configuration key Comment Default
value

tiglViewer Configuration of the external TiGL Viewer application
integration. This needs to be configured to enable RCE's
TiGL Viewer view and thus, the TIGL Viewer workflow

11

Setup

Configuration key

Comment

Default
value

component. Note:TiGL Viewer must be downloaded and
installed separately.

tiglViewer/binaryPath

The path to the TiGL Viewer executable file. Must be an
absolute path.

tiglViewer/
startupTimeoutSeconds

The timeout in seconds, to wait for the external TiGL
viewer application to start and determine its processid.

10

tiglViewer/embedWindow

If set to false, the external TiGL Viewer application
Window will not be embeded into RCE's TiGL Viewer
view.

true

python Configuration of a external Python instalation. This|-
needs to be configured to enable Python script language
for the Script Component. Note: Python must be
downloaded and installed separately.

python/binaryPath The path to alocal python installation. This needs to be|-

configured to enable Python script language for the Script
Component

Third Party integration Python path example:

"thirdPartylntegration": {
"python": {
"bi naryPat h":

}
}

Table2.7. " sshServer"

"/ pat h/ t o/ pyt hon/ execut abl e"

"host")

the SSH server accessible from remote, you should set
thisto the IP of the machine's external network interface.
Alternatively, you can set this to "0.0.0.0" to listen on
all available IPv4 addresses, if thisis appropriate in your
network setup.

Configuration key Comment Default
value

enabled If set to true the local instance acts as an SSH server. fase

ip (deprecated alias:|The host's ip address to bind to. If you want to make|127.0.0.1

port

The port number to which SSH clients can connect to.

idleTimeoutSeconds

The time to keep an idle SSH connection aive, in
seconds. For typical SSH usage, the default vaue is
usually sufficient. Higher values are, for exampl e, needed
when invoking long-running tools using the SSH Remote
Access feature.

10

accounts A map of accounts. For each account a unique identifier|{} (an
(account name) must be given. empty map
in JSON
format)
[account name]/| The hashed password for the account, if password-
passwordHash authentication is used. If the SSH account is configured
using the configuration Ul, the hash is automatically
computed and stored here.
[account name]/password| The password for the account. SSH passwords can|-
(deprecated) also be configured as plain text, which is however

12

Setup

Configuration key Comment Default
value

not recommended. To prevent misuse of the configured
login data, any configuration file with SSH accounts
must be secured against unauthorized reading (e.g. by
setting restrictive filesystem permissions). A more secure
aternative isto just store the password hash.

[account name]/publickey |The public key for the account, if keyfile authentication
is used. Only RSA keys in the OpenSSH format are
supported. The public key has to be entered here in the
OpenSSH format (a string starting with "ssh-rsa’, like
it is used for example in authorized_keys files). Only
applicable on RCE version 7.1 or newer.

[account name]/role The role of the account. See next table for alist of the|-
possibleroles.
[account name]/enabled If set to true, the account is enabled. true

SSH Server Sample:

"sshServer" : {
"enabl ed" : true,
"ip" : "127.0.0.1",
"port" : 31005,
"accounts" : {
"ra_demd" : {
/'l hashed formof the "ra_demp" test password; DO NOT reuse this for |ive accounts!
"passwor dHash" : "$2a$10$qx CBUEvqOxWQA 0x2dVbCu8z CYsyx QvBe5SANS2HI dOuaEp59aAu2”,
“role" : "renote_access_user",
"enabl ed" : true
}
}
}

Table 2.8. Possiblerolesfor SSH accounts

Role name Allowed commands

uplink_client (Standard role for using| Cannot open a command shell or run any commands
Uplink connections)

remote_access user (Standard role for | rasysmon (can use Uplink connections)
using SSH remote access tools and

workflows)

remote access (backwards| rajsysmon (can use Uplink connections)

compatibility dias for

remote_access user)

remote_access admin raJra-admin|sysmon|components

workflow_observer components|net info|sysmon|wf listjwf details

workflow_admin components|net infolsysmon|wf

local_admin cnjcomponentsjmail |net|restart|shutdown|stopistatsitasks|
auth

instance_management_admin im|net infolauth

instance_management_delegate user |cnjcomponents|net|restart|shutdown|stop|statsjtasksjwf|ra-
admin|auth

developer <al>

13

Setup

Table2.9. " uplink"

Configuration key

Comment

Default
value

uplinkConnections

A map of Uplink connections.This allows the local
instance to act as an Uplink client. For each connection a

{} @n
empty map

unique identifier (id) must be given. in JSSON
format)
uplinkConnections/[id]/ The name for the connection that will be shown in the|-
displayName network view.
uplinkConnections/[id]/ The remote RCE instance (Uplink relay) to connect to. |-
host Host names and |Pv4 addresses are permitted.
uplinkConnections/[id]/ Port number of the remote RCE instance. -
port
uplinkConnections/[id]/ The login name for authentication. -
loginName
uplinkConnections/[id]/ Path to the private key file, if keyfile authentication|-
keyfileLocation is used. Only RSA keys in the OpenSSH format are
supported.
uplinkConnections/[id]/ This option should only be set if a private key that|false
noPassphrase requires no passphrase is used for authentication. If
set to true, RCE does not ask for a passphrase before
connecting.
uplinkConnections/[id]/ If other RCE instances use the same account to connect| default
clientiD to therelay, you haveto set aunique client ID here (max.
8 characters)
uplinkConnections/[id]/ If set to true, thisinstance will act as an Uplink gateway | false
isGateway (see chapter Section 3.6.2, “Uplink Connections’ for
further information)
uplinkConnections/[id]/ If set to true, the connection is immediately established|false
connectOnStartup on startup. (Only possible when the password is stored.)
uplinkConnections/[id]/ If set to true, RCE will try to automatically reconnect the|false

autoRetry

connection (every 5 seconds) if it can not be established
or is lost of a network error. (Only possible when the
password is stored in the secure store.)

Uplink Connection Sample:

“uplink" : {
"upl i nkConnections" : {

"di spl ayNane" :
"clientID': "client1",
"host" : "127.0.0.1",
"port" : 31005,
"connect OnStart up":
"autoRetry" : false,
"isCateway" : false,
"l ogi nNane" : "ra_denp"

}
}
}

"exanpl eUpl i nkConnecti onl D' :
"exanpl e",

fal se,

{

/1 The passphrase is not stored here, it has to be entered when connecti ng.

14

Setup

Table 2.10. " sshRemoteAccess"

Configuration key

Comment

Default
value

sshConnections

A map of SSH connections.This allowsthelocal instance

{} (@an

to act asa SSH remote access client. For each connection|empty map
aunique identifier (id) must be given. in JSSON
format)
sshConnectiong/[id]/ The name for the connection that will be shown in the|-
displayName network view.
sshConnectiong/[id]/host | The remote RCE instance to connect to. Host names and | -
IPv4 addresses are permitted.
sshConnectiong/[id]/port | Port number of the remote RCE instance. -
sshConnectiong/[id]/ The login name for authentication. -
loginName
sshConnectiong/[id]/ Path to the private key file, if keyfile authentication|-
keyfileLocation is used. Only RSA keys in the OpenSSH format are
supported.
sshConnectiong/[id]/ This option should only be set if a private key that|false
noPassphrase requires no passphrase is used for authentication. If
set to true, RCE does not ask for a passphrase before
connecting.
sshConnectiong/[id]/ If set to true, the connection is immediately established|false
connectOnStartup on startup. (Only possible when the password is stored in
the secure store.)
sshConnectiong/[id]/ If set to true, RCE will try to automatically reconnect the|false
autoRetry connection (every 10 seconds) if it can not be established
or is lost of a network error. (Only possible when the
password is stored in the secure store.)
Remote Access Connection Sample
"sshRenot eAccess” : {
"sshConnections" : {
"exanpl eSSHConnect i on" : {
"di spl ayNarme" : "exanple",
"host" : "127.0.0.1",
"port" : 31005,
"connect OnStartup": false,
"autoRetry" : false,
"l ogi nNane" : "“ra_denp"
/1 The passphrase is not stored here, it has to be entered when connecting.
}
}
}
Table2.11. " smtpServer”
Configuration key Comment Default
value
host The IP address or hostname of the SMTP server, which|-
should be used for mail delivery.
port Port number of the SMTP server. -
encryption Can either be "explicit" or "implicit". Select "implicit" |-

if you want to connect to the SMTP server using SSL/
TLS. Select "explicit" if youwant to connect tothe SMTP
server using STARTTLS. Unencrypted connections are
not permitted.

15

Configuration key Comment Default
value

username The login name for authentication. -

password The obfuscated password for authentication. Plaintext|-
password cannot be used here. To create the obfuscated
password from the plaintext password, you need to
use the Configuration Ul described in Section 2.2.3,
“Configuration Ul”

sender Email address, which should be displayed as the sender |-
in the sent email.

Note

The used SMTP server needs to be configured using the Configuration Ul described in Section 2.2.3.2, “Mail:
SMTP server configuration”, since the password needs to be obfuscated.

2.2.3. Configuration Ul

If you want to configure SSH accounts with passphrases or you want to configure e-mail support for
the instance, you need to use the Configuration Ul. Y ou can access the interactive tool by executing
RCE from the command line with the option "rce --configure" or by using the "Launch Configuration
UI" script in the "extras" folder of your RCE installation directory.

Figure 2.1. Configuration tool for SSH account and SMTP server

configuration

|£:| Terminal
RCE Configuration Shell, editing profile : default

Select Action
Remote Access: Add a new SSH account
Remote Access: Edit existing SS5H accounts
Mail: Configure SMTP mail server

< Close >

2.2.3.1. Remote Access: SSH account configuration

If the RCE instance shall act asa SSH server, you can configure SSH accounts using the Configuration
Ul, which encrypts the SSH passwords before storing them in the configuration file.

16

Setup

Note

All SSH accounts configured with this tool initially have the role "remote_access _user", which allows to execute
commands needed for remote access on tools and workflows. If you want to change the role of an SSH account,
you can do this by editing the configuration file manually (see Table 2.8, “Possible roles for SSH accounts”).

2.2.3.2. Mail: SMTP server configuration

2.2.4.

If you use the tool output verification (cf. Section 3.2.8, “Manual Tool Result Verification™) and want
RCE to send the verification key viaemail, you need to configure an SMTP server. RCE does not send
e-mailsdirectly to the recipient, but instead sendsthe e-mailsto an SMTP server, which deliversthem
to the recipient. Y ou need to use the Configuration Ul to configure such an SMTP server, since the
password used for authentication needs to be obfuscated before it is stored in the configuration file.
The SMTP server parameters that need to be configured are described in more detail in Table 2.11,
“"smtpServer

Note

Due to a known bug on Windows system with a German keyboard layout, the Configuration Ul inserts the
characters"g@" into atext field if you want to insert the @ sign. Y ou can manually remove the additional character

q.

Importing authorization data without GUI access

There are currently two categories of authorization data that should not be simply written into
configuration files for security reasons: SSH login passwords and keyfile passphrases, and RCE
authorization group keys (the "export/import" strings). To support scenarios where interactive entry
is not possible, for example daemon/service installations, a file-based import mechanism is provided
aswell.

The general usageisthe samefor all kinds of import data:
* Locate the folder of the profile that you want to import into.
* If it does not exist yet, create afolder "i npor t " within that profile directory.

» Within this"i npor t " folder, create the sub-folder mentioned in the specific description below;
for example, "aut h- gr oup- keys".

» To perform an import, create afile inside this specific sub-folder and edit it, or copy afilethat you
aready prepared into that folder. These files are referred to as "import files'. The filenames and
contents to use for them are described in the specific sections below.

» Onceyou have created or copied all import filesthat you want to processs, (re)start RCE. Currently,
al import file processing is done on startup. (Note: Future versions of RCE may be expanded to
also detect and process new import files without a restart.)

« If afile has been successfully imported, it is deleted to minimize the time that it is present in the
filesystem (for security), and to prevent it from being processed again on every RCE start. Make
sure that thisfile is not the only reference to the authorization data that you have!

2.2.4.1. Importing or deleting RCE authorization group keys

This section focusses on importing or deleting already defined authorization groups via their group
keys. Creating groupsis explained in Section 3.5, “Tool publishing and authorization”.

» Group key import files must be placed in <pr of i | e>/ i nport/ aut h- gr oup- keys/ .

17

Setup

For group keys, the import files can have any name. For each key you wish to import asingle file
isrequired.

The import file's content must be the group import string; it should look similar to
"My Gr oupNane: 23b0ad9043a39496: 1: 1K6D5COBKYu[. . .] sSM.I1 j 0Tg".

Deleting groupsis also supported. To delete agroup, write"del et e" into thefile, followed by the
full id (name + random part) of the group you want to delete. For convenience, you can also use the
full import string as used above. For example, if you wanted to delete the group mentioned above,
either of these contents would work:

e "del ete MyG oupNane: 23b0ad9043a39496"

e "del ete
My G oupNane: 23b0ad9043a39496: 1: 1K6D5COBKYu[. . .] sSM.1 j 0Tg"

After successful import or deletion of a group key, the file is deleted from the profile folder.

2.2.4.2. Importing SSH Uplink passwords or keyfile passphrases

Uplink password/passphrase import files must be placed in <pr ofi | e>/i nport/ upl i nk-
pws/ .

The names of the import files are relevant: These must be the "connection id" used in the Uplink
connection configuration. Thisid isthe string right in front of the the part outside of the connection's
configuration block (e.g. " nyConnection" : { ...<connection settings>... }).
For convenience on Windows, a".txt" extension can be added to thisfilename; thiswill be cut away
by the importer.

The content of the filesis the password or keyfile passphrase.

Asthisisnever actually needed, deleting passwordsisnot directly supported. If you haveimported a
password/passphrase you would rather remove from RCE's secure storage, simply import adummy
password for the same connection id. Thiswill overwrite and erase the previous data.

2.2.4.3. Importing SSH Remote Access passwords or keyfile
passphrases

Uplink password/passphrase import files must be placed in<prof il e>/i nport/ra-pws/ .

The names of the import files are relevant: These must be the "connection id" used in the Remote
Access connection configuration. This id is the string right in front of the the part outside of
the connection’'s configuration block (e.g. "nyConnection" : { ...<connection
settings>... }). For convenience on Windows, a ".txt" extension can be added to this
filename; thiswill be cut away by the importer.

The content of the filesis the password or keyfile passphrase.

Asthisisnever actually needed, deleting passwordsis not directly supported. If you haveimported a
password/passphrase you would rather remove from RCE's secure storage, simply import adummy
password for the same connection id. Thiswill overwrite and erase the previous data.

18

Chapter 3. Usage

This chapter describes the main usage concepts.

3.1. Graphical User Interface

This section introduces the Graphical User Interface (GUI).

The GUI of RCE is composed of different views and editors (besides standard GUI elements such as
the menu bar, status bar, etc.). Views can be (re-)arranged by the user. They can even be closed and
opened again. Some views are closed by default, but can be opened as desired. To open a view go
to: Window _ Show view.

Figure 3.1. Workbench with different views and the wor kflow editor opened

[} RCE e i
File Edit Search Run Window Help
3~ EIEIC BEARE" |
[25 project Explorer 52 = & ¥ < O||fdMpo 4wt 53 A FINISHED MDO_V12_2013-10-21 =a
1 MDO Project % Palette ;
[ixl) MDO_VLOWE Select
[] MDO_VL1wf s Select
[i) MDO V1.2 te—— ﬁ | Draw Connection
MDO_VI3wf Merger Mass Input Wing 12 Open Connection Editor
MDO_V14.mf
- (= Data Flow.
(& Execution
X Excel
t @ Saii
pt
Yy iy ar o
Control Optimizer Wing AeroCluster imple Wrapper
2 (= Studies
T (= Under Test
2 Cluster
pai/ied ¢ Design of Experiments
as i J S)
Converger Mesh Extract (& User Integrated Tools
A Mass
Wing
[i] Workflow List 22 @ = O [Log | @ Network View | =] Properties |[E] Workflow Console | i Workflow Data Browser |/ Optimizer 2 =0
Name Status Property Value MDO_V1.2_2013-10-21
MDO_V13.2013-10-21 1. FINISHED i deaccilrs S
MDO_V13_2013-10-21 1. CANCELED showTitle true ghﬁ_*‘\-} - -
MDO_V11_2013-10-21 1... FINISHED title MDO_V1.2_2013-10-21 L - =
MDO_V13 2013-10-21 1. RUNNING traces Trace 2] _— ~
MDO_V1.2.2013-10-21 1. FINISHED Xhxes Xhuis [1] .
MDO_v1.0_2013-10-21 1... PAUSED Yixes Vs (1) ‘ .
0,86 T ™™
005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 08 035 09 095 1 105 11 118
< » x
Add trace

+ || Disgram |Data

Left hand side:

» Project Explorer: View to manage projects. All relevant data including workflow files needs to be
organized in projects.

» Workflow List: Listsall activeworkflowsand allowsto manage them (stop, pause, resume, dispose).
Right hand side and center:
» Workflow Editor: Core view of RCE used to build and configure workflows.

o Palette: Lists al available workflow components. If RCE runs in a distributed environment
this includes local as well as remote workflow components. At the top, it also provides actions
for connecting workflow components. We show the connection editor in the following Figure.
Additionally, connections of the workflow are shown in the Properties view at the bottom, if the
background of the workflow editor is selected.

19

Usage

Figure 3.2. Connection Editor

3 commconcoror . sl

Source Connections Target

Aerodynamic { Aerodynamic
-| hotinput

=] aero_xli 'E,
TEI mesh
Structure
'E, aeroxli

=| hotsose_dat E hotsose_dat
x stsrm_out

Structure =]
1.23 COQ_X

abf: pathtxt_cut

1.2z wehicle_mass

123 cacwf
1.23 €M

1.23 CW

Cancel

Bottom:
* Log: Showsall log output of RCE, e.g. error messages during workflow execution.

* Network View: Shows al RCE instances of the distributed RCE network and their published
workflow components. It also shows the outgoing connections of the own RCE instance and allows
to manage them (start, stop, etc.). Furthermore, you are able to see monitoring data like CPU or

RAM usage for each instance.

Figure 3.3. Network View

£ Network 22] ﬂ Workflow ... | =] Properties| El workflow ... &= Comman... ||E|Workﬂow... | =0

FFIOBFAE

4 = RCE Network
4 |7 Instances
4 [RCEinstancel <Woarkflow Host> < 5elf=
4 [Published Components
| Tempfilter (1.0)
> [~ Local Coemponents
4 [= Monitoring Data
= RCE CPU Usage: 0.00%
= RCE Tools CPU Usage: 0.00%
= Total CPU usage: 449% (Non-Instance processes: 4,49%, Idle: 95.51%)
B0 Total RAM usage: 6509 /16048 MIB
4 & Connections
& rcednstance.host:21000 (disconnected: active discennect)
4 = SS5H Remote Access
a4 & S5H Remote Access Connections
" rcessh.remote.host:31005 (disconnected)

» Workflow Data Browser: Shows workflow related result data.

20

Usage

Figure 3.4. Workflow Data Browser

= Network D Workflow ... &7 :Properties &I workflow ... = Comman... EWMHIDW... =0

1% 1% O P | v
: fg‘ MDO_IDF_Sellar_2016-11-30_08:5%:32_17 <remote> -
4 ,5 MDO_CO_Sellar_2016-11-30_08:5%:13_16 <remote=
MDO_CO_Sellar_2016-11-20_08_59 13 _16-err.log [2 KB]
- (i) RunInformation
4 5D Timeline
a A\ Optimizer - Run 25 (2016-11-30 09:19:17) <remote>
i Hostinstance: SLED12 instance
Optimizer input file
Optimizer calculation file
Optimizer result file
4 = Inputs
.23 constl: 9.83749686996806E-5
.23 const2: 0.0065307551754074395
.23 f; 0.874960052524442
a = Outputs
Done: true
.23 ¥1_optimal: 0.0

123 ylc_optimal 0.0

.23 y2c_optimal: 0.0

.22 z1_optimal: 0.0

.23 z2_optimal: 0.0

a4 |=| Execution Log
Optimizer-25_compl.log [3 KB]
Optimizer-25_err.log [0.17 KB]
Objective - Run 24 (2016-11-30 09:19:16) <remotex -

 Properties: Allows configuration of workflow components (e.g. Inputs/Outputs) if they are selected
in the workflow editor. View adapts to selected workflow component.

» Workflow Console: Shows all native console line output of integrated tools during workflow
execution. Provides full text search.

Figure 3.5. Workflow Console

5 Network | [J Workflow Data Browser | =1 Properties | El Workflow Console 22 | & Command Console |[i] Workflow List BEX =8

| Workflow/Component (V] Tool out [¥] Tool error ‘[ALL] v‘ ‘[ALL] -

search in messages

Type Time Message Component Workflow *
ElTesl 2016-11-30 10:00:50,023 model. Optimizer mdo_v1.8.
ElTesl 2016-11-30 10:00:50,023 id_model - 'modell’ Optimizer mdo_v1.8.
ElTeol 2016-11-30 10:00:50,023 responses_pointer = 'responsesl' optimizer mdo_v1.3.
ElTeol 2016-11-30 10:00:50,023 single Optimizer mdo_v1.3.
ElTeol 2016-11-30 10:00:50,023 Optimizer mdo_v1.8.
ElTeol 2016-11-30 10:00:50,023 responses, Optimizer mdo_v1.8.
ElTeol 2016-11-30 10:00:50,023 id_responses = 'Tesponsesl' Optimizer mdo_v1.8.
ElTeol 2016-11-30 10:00:50,024 num objective_functions = 1 Optimizer mdo_v1.8.
ElTeol 2016-11-30 10:00:50,024 multi_ohjective_weights = 1.0 Optimizer mdo_v1.8. %
ElTeol 2016-11-30 10:00:50,024 num_nonlinear_ineguality_constraints = 4 Optimizer mdo_v1.8.
ElTesl 2016-11-30 10:00:50,024 nenlinear_inequality_upper_bounds = 0.001 0.5 1.0 1.0E30 Optimizer mdo_v1.8.
ElTesl 2016-11-30 10:00:50,024 nenlinear_inequality_lower_bounds = 0.0 -0.5 -1.0 3.0 Optimizer mdo_v1.8.
ElTeol 2016-11-30 10:00:50,024 no_gradients Optimizer mdo_v1.3.
ElTeol 2016-11-30 10:00:50,024 no_hessians Optimizer mdo_v1.3.
ElTeol 2016-11-30 10:00:50, Optimizer mdo_v1.8.
ElTeol 2016-11-30 10:00:50, Optimizer mdo_v1.8.
ElTeol 2016-11-30 10:00:50, Optimizer mdo v1.B. _

« m D

3.2. Workflows

This section describes the basics of workflowsin RCE.

21

Usage

3.2.1.

3.2.2.

3.2.3.

Rationale

RCE is designed to execute automated, distributed workflows. Workflows consist of so called
workflow components which can be coupled with each other. Loops are supported, even multi-nested
ones.

Getting Started

To get started with workflows in RCE it is recommended to both read the following sections about
workflows and walk through the example workflows provided in RCE. The sections here refer to the
workflow examples whereit is useful and vice versa

Workflows in RCE are encapsulated in so called projects. To create the workflow examples project
go to: File _, New _ Workflow Examples Project. A dialog appears. Leave the default project
name or give it a name of your choice and confirm by clicking Fi ni sh. In the Project Explorer
on the left-hand side, the newly created project is shown. The example workflows are grouped in
sub folders. It is recommended to walk through the workflows following the prefix starting with

01_01_Hel I o_World. wf.

Workflow Components

Workflow components are either tools that are integrated by users or are provided by RCE supplying
multi-purpose functionality. The following list shows workflow components provided by RCE
grouped by purpose (workflow components that are deprecated (i.e., they are removed soon) or that
are not recommended to use anymore are left out):

» Data: Database

» Data Flow: Input Provider, Output Writer, Joiner, Switch

Evaluation: Optimizer, Design of Experiments, Parametric Study, Converger, Evaluation Memory

 Execution: Script, Cluster, Excel

XML: XML Loader, XML Merger, XML Vaues

CPACS: TiGL Viewer, VAMPzero Initidizer

Note

The Optimizer component uses the Dakota toolkit [https://dakota.sandia.gov/] in order to perform the actual
optimization. This toolkit is included in the RCE distribution, i.e., it is installed together with RCE. On some
systems, however, notably Ubuntu 18.04, thistoolkit cannot be executed, asthe required library libgfortran3is not
installed by default. If the toolkit cannot be executed, the Optimizer component will issue the error Coul d not

start optimzer. Maybe binaries are missing or not conpatible with system;

cause: Optimzer exited with a non zero exit code. Optimizer exit code = 127
(E#1543567120128) or similar in the workflow console and the data management.

On Ubuntu 18.04, this library can be installed by installing the package libgfortran3. For other systems, please
refer to the documentation or the administrator of your system in order to satisfy the missing dependency of the
Dakotatoolkit.

The example workflows in subfolder 02_Conponent G oups introduce some of the workflow
components provided. Additionally, there is a documentation for each workflow component available
in RCE. To accessit, you can either rightclick on a component in aworkflow and select Open Hel p
or press F1. A help view opens on the right-hand side. Moreover thereisan entry Hel p Cont ent s
in the Hel p menu where you can navigate to the component help you require.

The XML and CPACS components are able to read or extract datafrom an XML file viadynamicin-
or outputs. The XPathChooser isafeature that provides help selecting theitem, which shall beread or

22

https://dakota.sandia.gov/
https://dakota.sandia.gov/

Usage

3.2.4.

extracted. Add anin- or output and pressthe XPat h choosi ng. . . button to open awindow where
you can select the XML file which contains the item that shall be selected. After choosing thefile, the
XPathChooser opens containing a tree, symbolizing the XML file. By selecting an element, the text
below is updated and displays the current path. The last two columns are used to choose attributes.
The attribute name can be selected viathe column At t r i but es. Inthe column Val ues the proper
value can be selected. Use adouble-click on an element to expand or fold the tree. The chosen XPath
will be written in the text field of the window in which the X PathChooser has been opened originally.
Using this text field, new paths can be created. Add a slash and the name of the node that shall be
created to the existing path. The new path will be added during the workflow run.

New XPaths can only be generated within the inputs tab. Using the outputs tab will cause an error.

Coupling Workflow Components

A workflow component can send data to other workflow components. Therefore, a so called
connection needs to be created between the sending workflow component and the receiving one. For
that purpose, workflow components can have so called inputs and outputs. A connection is aways
created between an output and an input. You can think of a connection as a directed data channel.
Datais sent as atomic packages which are not rel ated to each other (thereis no data streaming between
workflow components). Supported data types are:

Primitive data types:

» Short Text: A short text (up to 140 characters)
* Integer:Integer number

* Float:Floating point number
 Boolean:Boolean value (true or false)

Referenced data types (The actual data is stored in RCE's data management and only a reference is
transfered):

» FileFile
* Directory:Directory
Other data types

e S9mall Table: The RCE syntax for Small Tables is [[a,b,...],[c,d,...],...], whereat the table values
a,b,c,d arerestricted to values of type Short Text, Integer, Float, Boolean (primitive data types) as
well as File and Directory. Be aware, that in case of File and Directory simply the path to the Files
or Directories will be stored in the Small Table. Each column holds the same number of entries.
The total number of possible cellsis up to 100.000.

* Vector:one-dimensional "Small Table" (one column) restricted to values of type Float i.e. [X,y,z,...]
» Matrix: Small Table restricted to values of type Float

Not all of the workflow components support al of the data types listed. A connection can be created
between an output and an input if:

» Thedatatype of the output is the same as or convertible to the data type of the input.
» Theinput is not already connected to another output.

Note that data from an output can be sent to multiple inputs, but an input can just receive data from
asingle output.

The following table shows which data types are convertible to which other types:

23

Usage

Table 3.1. Data Type Conversion Table

To . Small | Short . .
From Boolean | Integer | Float | Vector | Matrix Table | Text File Directory

Boolean X X X

Integer X X

Float X

X | X | X | X

Vector

X | X | X | X | X

Matrix

Small
Table

Short X
Text

File
Directory,

3.2.5. Execution Scheduling of Workflow Components

The execution of workflows is data-driven. As soon as al of the desired input data is available, a
workflow component will be executed. Which input data is desired is defined by the component
developer (for RCE's default workflow components), the tool integrator, and/or the workflow creator.
The workflow component developer and tool integrator decide which options are allowed for a
particular workflow component. The workflow creator can choose between those options at workflow
design time. The following options exist:

Input handling:

 Constant: The value won't be consumed during execution and will be reused in the next iteration (if
thereis any loop in the workflow). The workflow will fail if there is more than one value received,
except for nested loops: All inputs of type Constant are resetted within nested loops, after the nested
loop has been finished.

e Sngle (Consumed): The input value will be consumed during execution and won't be reused in
the next iteration (if there is any loop in the workflow). Queuing of input valuesis not allowed. If
another value is received before the current one was consumed, the workflow will fail. This can
guard against workflow design errors. E.g., an optimizer must not receive more than one value at
one single input within one iteration.

* Queue (Consumed): Theinput value will be consumed during execution and won't be reused in the
next iteration (if there is any loop in the workflow). Queuing of input valuesis allowed.

Execution constraint:
* Required: Theinput valueisrequired for execution. Thus, the input must be connected to an output.

» Required if connected: The input value is not required for execution (e.g., if adefault value will be
used asfall back within the component). Thus, the input doesn't need to be connected to an output.
But if it is connected to an output, it will be handled as an input of type Required.

* Not required: The input value is not required for execution. Thus, the input doesn't need to be
connected to an output. If it isconnected to an output, theinput value will be passed to the component
if there is avalue available at the time of execution. Values at inputs of type Not required cannot
trigger component execution except if it isthe only input defined for a component. Note: With this
option, non-deterministic workflows can be easily created. Use this option carefully. If in doubt,
leaveit out.

24

Usage

3.2.6.

Note: With RCE 6.0.0 the scheduling options changed. Below is the migration path:
* Initial was migrated to Constant and Required.

* Required was migrated to Sngle (Consumed) and Required.

» Optional was migrated to Single (Consumed) and Required if connected.

If you encounter any problems with workflows created before RCE 6.0.0, it is likely, that it affects
the migration to Single (Consumed) instead of to Queue (Consumed). We decided to migrate
conservatively to not hide any existing workflow design errors. So, if queuing of input values is
allowed for an input, just change the input handling option to Queue (Consumed) after the workflow
was updated. Another issue can affect the migration of Optional. If it affects an input of the script
component, check the option, which let the script component execute on each new value at any of its
inputs. Also check Not required as an alternative execution constraint option.

(Nested) Loops

Workflow components can be coupled to loops. A loop must aways contain a so-called driver
workflow component. Driver workflow components (group "Evaluation") are: Optimizer, Design of
Experiments, Parametric Study, Converger (seethe exampleworkflow "02_02_Evaluation_Drivers').
The responsibilities of a driver workflow component in aloop are:

» Send values to the loop and receive the result values.
* Finish the loop based on some certain criteria.

If aloop contains another loop, we speak of the latter as a nested loop. A nested loop can contain
again another loop and so on. To create workflows with nested loops (see example workflows in
"03_Workflow_Logic"), some certain concepts behind nested |oops must be understood:

» Loop level: If aloop contains another 1oop, that loop is considered as a nested loop with a lower
loop level. From the perspective of the nested loop, the other loop is considered as aloop with an
upper loop level.

* If adriver workflow component is part of a nested loop, you need to check the checkbox in the
"Nested Loop" configuration tab

» Data exchange between loops of different loop levels is only allowed via a driver workflow
component. Thereby, only particular inputs and outputs of driver workflow componentsare allowed
to be connected to inputs and outputs of the next upper loop level and particular ones to inputs and
outputs of the sameloop level. For example, if a'sameloop level' output is connected to aloop with
an upper loop level, the workflow won't succeed or might even get stuck. Below you find tables of
inputs and outputs for each driver workflow component and whether they must be connected to the
same loop level or to the next upper loop level.

Note
In the inputs and outputs tables of driver workflow components (in 'Inputs/Outputs’ properties tab), the loop
level requirement is present in a particular column for each input and output.

Table 3.2. Inputs of Optimizer

Input Loop Level

* - |lower bounds - start value To next upper
loop level

* - upper bounds - start value To next upper
loop level

25

Usage

Input Loop Level
* - start value To next upper
loop level

* (Objective functions)

To same loop level

* (Constraints)

To sameloop level

d*.d* (Gradients)

To sameloop level

Table 3.3. Outputs of Optimizer

Output Loop Level

* optimal To next upper
loop level

Done To next upper

loop level

* (Design variables)

To sameloop level

Gradient request

To same loop level

Iteration

To sameloop level

Table 3.4. Inputs of Design of Experiments

I nput Loop Level
* start To next upper
loop level

To sameloop level

Table 3.5. Outputs of Design of Experiments

Output

Loop Level

Done

To same loop level

*

To sameloop level

Table 3.6. Inputs of Parametric Study

Input Loop Level
* start To next upper
loop level

To same loop level

Table 3.7. Outputs of Parametric Study

Output

Loop Level

Done

To sameloop level

*

To sameloop level

Table 3.8. Inputs of Converger

Input Loop Level
* start To next upper
loop level

To sameloop level

26

Usage

3.2.7.

3.2.8.

Table 3.9. Outputs of Converger

Output Loop Level
Converged To next upper
loop level
Converged absolute To next upper
loop level
Converged relative To next upper
loop level
*_converged To next upper
loop level
Done To same loop level
* To same loop level

Fault-tolerant Loops

Workflow components of aloop can fail. There are two kind of failures:

» A workflow component fails gracefully, i.e. it couldn't compute any results for the inputs received
but works normally. In this case, it sends a value of type "not-a-value" with the specified cause to
its outputs which finally are received by the driver workflow components as resuilts.

« A workflow component fails, i.e. it crashes for an unexpected reason. In this case, the workflow
engine sends values of type "not-a-value" with the specified cause as results to the driver workflow
component.

In the "Fault Tolerance" configuration tab of workflow driver components, it can be configured how
to handle failuresin loops, for both kind of failures separately.

Manual Tool Result Verification

After the execution of an integrated tool, the results are sent via outputs to the next workflow
component (e.g. to the next integrated tool). By default, thisis done in an automated manner without
any user interaction. If the data should be verified by a person responsible for the tool before they are
sent further, manual verification of tool results must be enabled in the tool integration wizard in the
'Verification' tab of the 'Inputs and Outputs' page.

In case manual verification of tool results is enabled, the results are hold after each tool execution
and the corresponding workflow component remains in state "Waiting for approval”. Then, there are
two options:

» Approvetool results: The tool results are sent via the outputs to the next workflow component and
the workflow continues normally.

» Regect toal results: The tool results are not sent via the outputs to the next workflow component
and the workflow is cancelled.

To apply one of the options, aso called verfication key isrequired. The verification key isgenerated by
RCE after each tool execution and iswritten to afile on thefile system of the machine which executed
the tool. (The location is specified in the 'Verification' tab of the 'Inputs and Outputs' page in the tool
integration wizard.) Optionally, the verification key can also be sent via email if e-mail support is
configured for the RCE instance where the tool isintegrated. (E-mail support can only be configured
using the Configuration Ul as described in Section 2.2.3.2, “Mail: SMTP server configuration”) E-
mail delivery can be enabled and the recipients can be defined in the 'Verification' tab of the 'Inputs
and Outputs' page in the tool integration wizard.

27

Usage

Oncetheverification key isknown (either from thefileor an e-mail), perform follwing stepsto approve

or reject the tools resullts;

» Start an RCE instance with a graphical user interface. (Your tool must be available, i.e. it must
appear in the palette of the workflow editor.)

* Inthe menu bar at the top, go to Run -> Verify tool results...

* A dialog appears that guides you through the verification process.

3.3. Commands

This section introduces the list of commands available for the command line and the interactive shell.

3.3.1. Command Line Parameters

General syntax

‘> rce --[RCE argunents] -[RCP argunents] -[VM argunent s]

Table 3.10. Command line argumentsfor RCE

Argument

Type

Description

profile "<profile id or path>"

RCE

Sets a custom profile folder to use. If only anid (any
valid directory name) is given, the profile directory
"<user home>/.rcefi d" isused. Alternatively, afull
filesystem path can be specified.

profile

RCE

If the profile argument is specified without a profile

id or path, RCE launches the Profile Selection Ul,
which allows to select a profile folder for the startup as
described in Section 3.3.2, “Profile Selection Ul”.

batch "<command string>"

RCE

Behaves like the "exec" command, but also implies the
"--headless" option and always shuts down RCE after
execution.

headless

RCE

Starts RCE in a headless modus without GUI. It will
remain in the OSGi console and waits for user input.

exec "<command string>"

RCE

Executes one or more shell commands defined by
<command string>. For the list of available commands,
refer to the command shell documentation. This
argument is usually used together with --headless

to run RCE in batch mode. Multiple commands can

be chained within <command string> by separating
themwith " ; " (note the spaces); each command is
completed before the next is started.

You can usethe"st op" command at the end of the
command sequence to shut down RCE after the other
commands have been executed. However, any error
during execution of these commands will cancel the
sequence, and prevent the "st op" command from
being executed. To ensure shut down at the end of the
command sequence, use the - - bat ch option instead
of "- - exec".

28

Usage

Argument Type |Description

Asanexample, rce --headl ess --exec

"wf run exanple.wf ; stop" will execute
the "example.wf" workflow in headless mode and
then shut down RCE. However, if the workflow
failsto start, RCE will keep running, asthe "st op"
command is never executed. To attempt execution
of the workflow file, but then always shut down
regardless of the outcome, user ce --batch "wf
run exanpl e. wf" instead.

configure RCE |Startsthe RCE Configuration Ul (Section 2.2.3,
“Configuration UI") which can be used to configure
SSH accounts with passphrases or to configure e-mail
support for the RCE instance.

data @noDefault RCP | Set the default workspace location to empty
consolel.og RCP |Logs everything for log files on the console as well.
console RCP |Runs RCE with an additional OSGi console window,

which allows you to execute RCE shell commands.
See the Command Shell documentation for more
information.

Deprecated: console <port> RCP | Specify the port that will be used to listen for telnet
connections. (NOTE: this access isinsecure; configure
SSH access instead)

clean RCP |Cleans before startup
vmargs VM Standard JVM arguments
Dde.rcenvironment.rce. VM Sets the configuration directory

configuration.dir=
<insert-config-path>

Drce.network. VM Setsthe local nodeid, overriding any stored value.
overrideNodeld =<some-id> Thisismostly used for automated testing.
Example:

"-Drce.network.overrideNodel d=
a96db8far62d59f2d2782f 3e5e9662d4"

Dcommunication. VM Sets the block size to use when uploading datato a
uploadBlockSize= remote node. Thisis useful for very slow connections
<block sizein bytes> (less than about 10 kb/s) to avoid timeouts. The default

value is 262144 (256 kb).

Example:
"-Dcommunication.uploadBlockSize=131072" - sets
the upload block size to 128kb (half the normal size)

3.3.2. Profile Selection Ul

During startup of the instance, the Profile Selection Ul allows to select a profile folder which should
be used for the current run of RCE. Furthermore it allows to specify a default profile for future runs.
Y ou can access the Profile Selection Ul by executing RCE from the command line with the option
"rce--profile".

29

Usage

Figure 3.6. Profile Selection Ul

|2 Terminal =8 Bl <5

Profile Selection

Select Action
Select a profile and start RCE.

Zelect the default profile for future runs.
< Close >

If the first option "Select a profile and start RCE" is chosen, alist of available profiles is presented.
On selection of one of these profiles, RCE is started using this profile.

If the second option "Select the default profile for future runs' is chosen, alist of available profiles
is presented. On selection of one of these profiles, RCE will not be started using this profile, but
instead the selected profile will be marked as the default profile for future runs. This selection can
be temporarily overwritten again by using the '-profile "<profile id or path>"' option. The default
profile setting will be stored for the current user and the current installation location of RCE. Different
users on the same machine can therefore configure different default profiles. Furthermore, different
installations of RCE can have different default profiles configured.

Note

The Profile Selection Ul will only display profilesif they have been started once with RCE 7.0 or newer.

3.3.3. Command Shell

RCE provides an integrated shell (sometimes referred to as " consol€e") for executing commands. It can
be accessed in three different ways:

» Start RCE with the "-console” command-line option, or add "-console" to the rce.ini file before
starting; this will open an OSGi console window. Due to the nature of an OSGi console, all
RCE commands must be prefixed with "rce". For example, type "rce help" to show the available
commands.

» Deprecated: Start RCE with the "-console <port>" command-line option; this will accept telnet
OSGi console sessionson that port. Aswith the"-consol€" option, RCE commands must be prefixed
with "rce" (for example, type "rce help").

Note that this option is insecure, as there is no authentication nor encryption, so it should only be
used in fully trusted networks. Whenever possible, use the SSH console (see below) instead .

30

Usage

 Configure SSH access. To do so, refer to Section Configuration Parameters. After RCE has started,
you can access the shell on the configured port with a standard SSH client. On Windows systems,
the "putty” software works well asaclient.

As this option creates a pure RCE shell (as opposed to the OSGi consoles created above), you can
enter RCE commandswithout a prefix - for example, just type"help" tolist the avail able commands.
Note that to avoid confusion, adding a""rce" prefix still works, but it is not necessary.

The following table lists some shell commands; more documentation coming soon.

Table 3.11. Shell Commands

Argument Description
help Lists all available commands.
auth Short form of "auth list".

auth create <group id> | Creates a new authorization group whith the given <group id> (an
identifier consisting of 2-32 letters, numbers, underscores ("_") and/or
brackets).

auth delete <group id> | Deletes the local authorization group with the given <group id>.

auth export <group id>| Exports the group with the given group id as an <invitation string> that can
be imported by another node, allowing that other node to join this group.

auth import Imports a group from an <invitation string> that was previously exported

<invitation string> on another node.

auth list Lists the authorization groups that the local node belongs to.

cn Short form of "cn list".

cn add <target> Adds a new network connection. (Example: cn add activemag-

["<description>"] tep:reeserver.example.com: 20001 "Our RCE Server")

cnlist Lists all network connections, including ids and connection states.

cn start <id> Starts/Connects a READY or DISCONNECTED connection (use "cn list"
to get theid).

cn stop <id> Stops/Disconnects an ESTABLISHED connection (use "cn list" to get the
id).

components Short form of "components list".

components list [-- Lists components published by reachable RCE nodes.

local] [--as-table]
The"--local" option only lists components provided by the local node.

The"--as-table" option formats the output as atable that is especially
suited for automated parsing.

components list-auth | Shows alist of all defined authorization settings. Note that these settings
are independent of whether a matching component exists, which means
that settings are kept when a component is removed and later added again.

components set-auth | Assigns alist of authorization groups to a component id. Note that
<component id> authorization settings always apply to al components with using thisid,
<groups> regardless of the component's version.

The <component id> needs to be defined as listed by the "components
list" command, e.g. "rce/Parametric Study", "common/MylntegratedTool",
or "cpacs/MyCpacsTool". Thisid must be enclosed in double quotesif it
contains spaces.

The <groups> to assign need to be provided as comma-separated list of
user-defined authorization groups. This replaces any previously assigned

groups. Note that the specified groups must have been created or imported

31

Usage

Argument

Description

beforehand; see the "auth create" and "auth import" commands for details.
Instead of alist of groups, the special value "public" can be used to grant
access to any user within the visible network, while "local" revokes any
previously granted access by remote users.

mail <recipient>
<subject> <body>

Sends an email to the specified recipient.

net

Short form of "net info".

net filter Shows the status of the IP whitelist filter.
net filter reload Reloads the | P whitélist configuration.
net info Lists all reachable RCE nodes.

ra-admin list-wfs

Liststheids of al published workflows.

ra-admin publish-wf
[-g <group name>]
[-K] [-t] [-p <JSON
placeholder file>]
<workflow file> <id>

Publishes aworkflow file for remote execution via"rarun-wf" using <id>.

-g name of the group in which the workflow will be shown in the Palette
on the client instance

-k (keep execution data): if set, the workflow execution data will not be
deleted after the workflow isrun

-t (temporary/transient): if set, the workflow is automatically unpublished
when the RCE instance is shut down

-p: adds a placeholder file for the given workflow; see the "wf run"
command's documentation for details. This operation verifies that the
workflow contains the required standard elements before publishing.

Note that a snapshot of the workflow file (and optionally, the given
placeholder file) is taken before publishing; subsequent changes of the
workflow file do NOT affect the published workflow.

ra-admin unpublish-wf
<id>

Unpublishes (removes) the workflow file with the given <id> from remote
execution.

restart Restarts RCE.

shutdown Shuts down the local RCE instance.
ssh Short form of "ssh list".

ssh add Adds a new ssh connection.
<displayName>

<host> <port>

<username>

<keyfilel ocation>

sshlist

Lists all ssh connections, including ids and connection states.

ssh start <id> Starts/connects the ssh connection with the given <id> (use" sshlist" to
get theid).

ssh stop <id> Stops/disconnects the ssh connection with the given <id> (use " ssh list" to
get the id).

stop Shuts down the local RCE instance (alias of "shutdown").

sysmon api Fetches system monitoring data from al reachable nodes in the network,

<operation> and printsit in aparser-friendly format.

Available operations: avgcpu+ram <time span> <time limit> - fetches the
average CPU load over the given time span and the current free RAM.

32

Usage

Argument Description
Operation parameters: time span - the maximum time span (in seconds) to
aggregate load data over time limit - the maximum time (in milliseconds)
to wait for each node's load data response.

sysmon local/-| Prints system monitoring data for the local instance.

sysmon remote/-r

Fetches system monitoring data from al reachable nodes in the network,
and printsit in a human-readable format.

version Shows version information.

wf Short form of "wf list"

wf list Listsal current workflows, their states and execution ids.
wf cancel <workflow |Cancels arunning or paused workflow.

execution id>

wf delete <workflow
execution id>

Deletes afinished, cancelled or failed workflow from the data management
and disposesiit.

wf details <workflow
execution id>

Shows details about one workflow.

wf open <workflow

Opens aruntime viewer of aworkflow. Requires GUI. When using SSH,

execution id> this command is only available to users with the role devel oper.

wf pause <workflow |Pause arunning workflow.

execution id>

wf resume <workflow |Resume a paused workflow.

execution id>

wf run [--delete Executes the given workflow file and waits until it has completed.
<onfinished| Workflow file paths containing spaces must be enclosed in double quotes

awayslnever>] [--
compact-output] [-p
<placeholder value
file>] <workflow file>

...

The"--delete” option defines the deletion behavior after workflow
completion. Deleting aworkflow deletes al of itsfilesin the data
management and releases certain resources that may or may not be used
after it has finished, for example data to be visualized in component's
runtime views. The default of this setting is "onfinished": The workflow
isdeleted if it terminatesin state "Finished" (which means normal
completion without errors), otherwise it is left unchanged for inspection.

The "--dispose” option defines the deletion behavior from the workflow
list. Disposing aworkflow does not delete its data from the data
management. The default of this setting is "onfinished”.

The "--compact-output" option reduces this command's output as much as
possible, which isintended to simplify scripted calls of this command. The
first line printed will either be the workflow's assigned id if the start was
successful, or atext startingwith " Err or " if the workflow could not

be started. If (and only if) the start was successful, a second line will be
printed once the workflow has terminated. The pattern of this second line
is"<workflow id> <final state>".

The"-p" option can be used to define a placehol der value file (see below).

wf verify [--delete
<onfinished|always|
never>] [--pr
<pardlel runs>] [--
s <serial runs>)
[-p <placeholder

Runs several workflows and creates a summary of which ones failed and
succeeded.

The"--pr" option defines how often the workflow is started in parallel. The
"--gr" options defines how often the workflow is started in serial. E.g. "--pr
5 --sr 3" starts the workflow three times with five in paralld. If "*" is used

33

Usage

Argument Description

valuefile>] -- with the "--basedir" option or multiple workflow filenames are passed, "--
basedir <directory> pr* and "--sr"* are applied for each of the workflows.

<workflow file>
[<workflow file> ..] |Forthe"--delete”, "dispose” and "-p" options refer to "wf run" above.

The "--basedir <directory>" parameter specifies the directory containing
the workflow files. File paths containing spaces must be enclosed in
double quotes (*...").

The second parameter defines the workflow's filenames. Using "*" as
workflow file runs all non-backup workflows in the basedir. Workflow file
paths containing spaces must be enclosed in double quotes ("...").

Note

The command wf open is only accessible to the role devel oper, as it influences the GUI of the server-instance.

3.3.3.1. Configuration Placeholder Value Files

Someworkflow components use placehol dersfor configuration values. Thevaluesfor the placeholders
are defined at workflow start. When executing workflows from the command line (e.g. in headless or
batch mode), the placeholder's values must be defined in afile, which will be passed to the command
with the -p option. Placeholder value files have following format:

{
<conponent i d>/ <conponent version> : {
<configuration placeholder id>: <configuration val ue>
}

<conponent i d>/ <conponent versi on>/ <conponent instance nane> : {
<configuration placehol der id>: <configuration val ue>
}

Note

Every id and every value must be in enclosed in double quotes (“...").

Theconponent i distheid string of acomponent (e.g. de.rcenvironment.script), theconponent
ver si on isthe version of the component that is used in the workflow (e.g. 3.4).

There are two ways of defining values for configuration placeholders. per component type and
per component instance. When defined per component type, the id and version must be specified
(e.g. "dercenvironment.script/3.4"). When defined per component instance the component id,
component version, and the name of the component in the workflow must be specified (e.g.
"de.rcenvironment.inputprovider/MyFile"). In both cases, the confi gurati on pl acehol der
i d, which is the name of the configuration placeholder, and the actua conf i gurati on val ue
must be specified.

Component instance values override component type values.

Note

It is possible to mix component type and component instance val ues.

Below is an example placeholder value file, which defines one placeholder value (component type)
for the input provider component and a placeholder value (component instance) for a specified input
provider component of the workflow:

{
"de. rcenvironnent.inputprovider/3.2": {
"inputFile": "/hone/user/globallnputFile.txt"

34

Usage

}
"de. rcenvi ronnent . i nput provi der/ 3.2/ Provider 1" : {
"inputFile": "/honme/user/Providerl.txt"
}
}

The following table lists components and their configuration placeholders.

Table 3.12. Components and their configuration placeholders

Component [Component id and version Configuration placeholders

Cluster de.rcenvironment.cluster/3.2 authuser - user name

authphrase - password (base64 encoded)

Input de.rcenvironment.inputprovider/3.2 | <output name> - value of output

Provider

Output de.rcenvironment.outputwriter/2.0 |targetRootFolder - path to target root folder

Writer

Script de.rcenvironment.script/3.4 pythonExecutionPath - path to the Python
executable (only required if Pythonisset as script
language)

3.4. Integration of External Tools

3.4.1. Basic Concepts

3.4.2.

The Tool Integration concept of RCE is used to integrate external tools for calculations, simulations
and so on into RCE and use them in a workflow as a component. The tools must fulfill these
requirements:

» Theexternal tool must be callable viacommand line

* It must have a non-interactive mode which is called viacommand line

* Input for the tool must be provided through command line arguments or files

If these requirements are fulfilled, a configuration file can be created that is used for the integration.
If you use RCE with a graphical user interface this can be done with the help of an wizard which
guides you through the settings. This wizard can be found in the menu Tool Integration -> Integrate

Tool.... Required fields are marked with an asterisk (*). When thewizard is finished and if everything
is correct, the integrated tool will automatically show up in the Workflow Editor palette.

Note

Thewizard has adynamic help, which is shown by clicking on the question mark on the bottom left or by pressing
F1. It will guide you through the pages of the wizard.

Directory Structure for Integrated Tools

When executing an integrated tool, a certain directory structure is created in the chosen working
directory. This structure depends on the options you have chosen in the integration wizard. The two
options that matter are "Use a new working directory each run" and "Tool copying behavior".

35

Usage

»Use a new working directory on each run“ not selected ,Use a new working directory on each run“ not selected
»Do not copy tool” selected ,,Copy tool to working directory once” selected
Root Working Directory Root Working Directory
Working Directory Working Directory

Config Directory Config Directory

Input Directory Input Directory

!
!

Output Output
Directory Directory

|

Tool Directory
Some File System Path

Tool Directory

,Use a new working directory on each run“ selected ,Use a new working directory on each run“ selected
,Copy tool to working directory once” selected ,,Copy tool to working directory on each run” selected
Root Working Directory Root Working Directory

4| Tool Directory | Work'("l‘gzD"'?CtOI'V

Working Directory .
(1,2,..) Config Directory

Config Directory

Input Directory

Input Directory

Output
Directory

Output
Directory

Tool Directory

Root Working Directory: This is the directory you choose in the "Tool Integration Wizard" as
"Working Directory" on the "Launch Settings" page.

Config Directory: In this directory, the configuration file that may be created by the tool integration
will be created by default. The configuration files can be created from the properties that are defined
for the tool on the "Tool Properties’ page.

Input Directory: All inputs of type "File" and "Directory" will be copied here. They will have a
subdirectory that has the same name as the name of the input (e.g. the input "x" of type "File" will
be put into "Input Directory/x/filename™).

Output Directory: All outputs of type"File" and "Directory" can be written into this directory. After
that, you can use the placeholder for this directory to assign these outputs to RCE outputs in the post
execution script. Towrite, e.g., theoutput directory into an output "x" of type"Directory" thefollowing
line in the post execution script would be required: ${ out : x} = "${di r: out put}"

Tool Directory: Thisisthe directory where the actual tool islocated. If the tool should not be copied,
it will be exactly the same directory that you choose, otherwise it will be the same as the chosen
directory but copied to the working directory.

Working Directory: A working directory is always the location, where all the other directories will
be created. If the option "Use a new working directory on each run" is disabled, this will always be
the same as the "Root Working Directory". Otherwise, a new directory is created each run (the name
will be the run number) and is the working directory for the run.

36

Usage

3.4.3. Copying of Integrated Tools

When a component is created in the integration wizard, a configuration file is created.

All configuration files from the tool integration are stored in the directory <pr of i | e f ol der >/
i ntegration/tool s/

In this directory, there is a separation between different kinds of integration realized through one
subdirectory for each. The conmmon folder always exists.

In these subdirectories, the integrated tools are stored, again separated through into a subdirectory for
each. The name of the directory isthe name of integration of the tool.

If an integrated tool is copied to another RCE instance or another machine, the directory of the tool
must be copied, containingaconf i gur ati on. j son and some optional files. It must be put in the
equivalent integration type directory of the target RCE instance. After that, RCE automatically reads
the new folder and if everything isvalid, the tool will be integrated right away.

Note

If you want to delete a tool folder that contains some documentation, this can cause an error. If you have this
problem, first empty the documentation folder and del ete the empty folder the documentation folder at first (it must
be empty), afterwards you can delete the tool folder.

3.4.3.1. Tool Execution Return Codes

The tools are executed by using a command line call on the operating system via the "Execution
Script”. When the tool finished executing (with or without error), its exit code is handed back to the
execution script and can be analyzed in this script. If in the script nothing elseis done, the exit codeis
handed back to RCE. When thereisan exit codethat isnot 0", RCE assumes that the tool crashed and
thus lets the component crash without executing the "Post Script”. Using the option "Exit codes other
than O isnot an error” can prevent the component to crash immediately. With this option enabled, the
post script wil be executed in any way and the exit code from the tool execution can be read by using
the placeholder from "Additional Properties®. In this case, the post script can run any post processing
and either not fail the component, so the workflow runs as normal, or let the compoennt crash after
some debugging information was written using the Script APl "RCE.fail ("reason™)".

3.4.4. Integration of CPACS Tools

3.4.4.1. Additional concepts of CPACS Tool Integration

Extending the common Tool Integration concept, the CPACS Tool Integration has some additional
features.

e Parameter Input Mapping (optional): Substitutes single values in the incoming CPACS content,
based on an XPath configured at workflow design time as a dynamic input of the component

* Input Mapping: Generates the tool input XML file as a subset of the incoming CPACS file XML
structure, specified by a mapping file

» Tool Specific Input Mapping (optional): Adds tool specific data to the tool input file, based on a
mapping file and adata XML file

» Output Mapping: Merges the content of the tool output XML file into the origin incoming CPACS
file, based on a mapping file

37

Usage

 Parameter Output Mapping (optional): Generates output val ues as single values of the CPACSresult
file, based on an XPath configured at workflow design time as a dynamic output of the component

» Execution option to only run on changed input: If enabled, the integrated tool will only run on
changed input. Therefore the content of the generated tool input file is compared to the last runs
content. Additionally the data of the static input channels are compared to the previous ones.

All the features listed above can be configured in the tool integration wizard on the dedicated CPACS
Tool Properties page.

The mappings can be specified by XML or XSLT as shown in the following examples. RCE
differentiates between these methods in accordance to the corresponding file extension (.xml or .xgl).

For XML mapping, the following mapping modes are supported (see the mapping mode definitions
in the mapping examples below):

« append: Elementsinthetarget path that have no equivalent in the source path are retained and are not
deleted. Otherwise the elementsin the target path are replaced by the corresponding elementsin the
source path. Two elements in the source and target path are considered to be the same if they have
the same element name, the same number of attributes and the same attributes with the same values.

« delete: Before copying, all elements that are described by the target path are deleted in the target
XML file. Thisisalso the standard behavior if no mapping modeis explicitly set in amapping rule.

 delete-only: All elementsthat are described by the target path are deleted in the target XML file.

If atarget element described by the target path is not availablein the XML filg, itis created including
all of its parent elements.

Example for an input or tool specific XML mapping :

<?xm version="1.0" encodi ng="UTF-8"?>
<map: mappi ngs xm ns: map="http://wwmv. r cenvi ronnent . de/ 2015/ mappi ng" xnl ns: xsl ="http: //ww. w3. or g/ 1999/
XSL/ Tr ansf or m' >

<map: mappi ng node="append" >
<map: sour ce>/ pat h/ t o/ your/ el ement </ map: sour ce>
<map: target >/ tool | nput/data/ var 1</ map: t ar get >
</ map: mappi ng>

<map: mappi ng node="del ete" >
<map: sour ce>/ pat h/ t o/ your/ el ement </ nap: sour ce>
<map: t arget >/t ool | nput / dat a/ var 2</ nap: t ar get >
</ map: mappi ng>

<map: mappi ng node="del et e-onl y" >
<map: t arget >/t ool | nput / dat a/ var 3</ nap: t ar get >
</ map: mappi ng>

<map: mappi ng>
<map: sour ce>/ pat h/ t o/ your/ el ement </ map: sour ce>
<map: target >/ tool | nput/dat a/ var 4</ map: t ar get >
</ map: mappi ng>

<xsl : for-each sel ect ="$sourceFi |l e/result/cases/case">
<map: mappi ng node="del ete" >
<map: sour ce>/ pat h/ t o/ your/ case[<xsl : val ue- of sel ect="position()" />]/el enent</ map: source>
<map: target >/t ool | nput/dat a/ condi ti on[<xsl : val ue- of sel ect="position()" />]/var</
map: t ar get >
</ map: mappi ng>
</ xsl : f or-each>

</ map: mappi ngs>

Input or tool specific XSLT mapping:

<?xm version="1.0" encodi ng="utf-8"?>
<xsl| : styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or mi' xm ns: xsi ="http://
www. W3. or g/ 2001/ XM_Schena- i nst ance" xsi : noNanmespaceSchemalLocat i on="cpacs_schema. xsd" >

<xsl:out put nmethod="xm" nedia-type="text/xm" />

<xsl:tenplate match="/">

38

Usage

<t ool | nput >
<dat a>
<var 1>
<xsl : val ue- of sel ect="/path/to/your/elenment" />
</var 1>
</ dat a>
</t ool | nput >
</ xsl:tenpl at e>
</ xsl : styl esheet >

Example of an output XML mapping:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<map: mappi ngs xm ns: map="htt p://ww. r cenvi ronment . de/ 2015/ mappi ng" xm ns: xsl ="http://ww. w3. or g/ 1999/
XSL/ Tr ansf or mi' >

<map: mappi ng>
<map: sour ce>/ t ool Qut put/ dat a/ resul t 1</ map: sour ce>
<map: target >/ path/to/your/resul t/el enent </ map: t ar get >
</ map: mappi ng>

</ map: mappi ngs>

And output XSLT mapping:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xsl:styl esheet version="1.0" xml ns:xsl="http://ww. w3. org/ 1999/ XSL/ Transform’ xm ns: xsi ="http://
www. W3. or g/ 2001/ XM_Schen®- i nst ance" excl ude-resul t-prefixes="xsi">
<xsl :out put nethod="xm" version="1.0" encodi ng="UTF-8" indent="yes"/>
<!--Define Variable for tool Qutput.xm-->
<xsl :variabl e name="t ool Qut put Fi | e" sel ect=""./Tool Qut put/t ool Qut put.xni"'"/>
<!--Copy conplete source file to result file -->
<xsl:tenplate match="@ | node()">
<xsl : copy>
<xsl :apply-tenpl ates select="@ | node()"/>
</ xsl : copy>
</ xsl : tenpl at e>
<!--Mdify a value of an existing node-->
<xsl:tenplate match="/path/to/your/result">
<el ement >
<xsl : val ue- of sel ect="docunent ($t ool QutputFile)/tool Qutput/data/resultl"/>
</ el enent >
</ xsl : tenpl at e>
</ xsl : styl esheet >

Please ensure to use the proper namespace for map (xmlns:map="http://www.rcenvironment.de/2015/
mapping”) in XML mapping files and the proper namespace for xd (xmlns:xsl="http://
www.w3.0rg/1999/X SL/Transform") in both types of mapping files.

Thefigurebelow illustrates how the additional featuresare used in the run process of an user-integrated
CPACStool.

39

Usage

Figure 3.7. Run process of an user-integrated CPACS Tool

User-integrated CPACS Tool - Run Process

|

Static Output
(optional)

Workflow CPACS Tool Common
Component Tool Integration Directory Tool Integration
» ynamic ~ .
(-xml) i Inputs Yes Inpl&:’;:ﬁfmg (.xml or .xsl)
_/ﬂ
No
Tool Specific
Dynamlc Input Input Mapping <€ Input File
(optional) (XMLor XSLT) ¢ (xml)
TIS f\ Tool Specific LOQOI Sipr)]ec;fi:z
ol\;ap’;?r?:gm _~—Yes Input Mapping <& (xr‘r::?orgxsl)
(XML or XSLT)) -
P Tool Input File
— N. » (xml)
>
Static Input ‘ \—/l/_\
(optional) l l
Run always 13
P
No
v v
Tool Input File ”/"\;\
and(i;act}::ér)\put es—'\”;"changed input\ Yes: > Pre-Script
\7/\ /\I/
/ . T
Tool Output ’,,,,// \“\\ Tool Run
(cached) (No—'\”wq_
f A 4
CPACS. . Tool Output File
Output File | Output Mapping | (.xml) <t Post-Script
(xml) N (XMLor XSLT) | : [« g
\/A\ » \/\
—_— \ 4 S
Dynamic Output Parameter OutputFir\I/:}applng
(optional) Outp&tp';/l?)vpmg (.xml or .xsl)
_ f\ .

—

.=

Static Output e L
ys

(cached) No—< Run alwa

~
<

3.4.4.2. Integrate a CPACS Tool into a Client Instance

1. Start RCE as Client

2. Open the Tooal Integration Wizard by clicking the Integrate Tool... in the File menu.

40

Usage

4

»

~

Note

You will always find further help by clicking the ? on the bottom left corner on each page of the wizard or
by pressing F1.

. Choose the option Create a new tool configuration from a template.

Note

The CPACS templates delivered with RCE are designed to match the conventions of the old CPACS tool
wrapper (respectively Model Center tool wrapper). Most of the properties are preconfigured and do not need
to be changed.

. Select one of the CPACStemplates.
Click Next.

. Fill in the Tool Description page.
Click Next.

. On the Inputs and Outputs page you will find preconfigured static in- and outputs, that will match
the old tool wrapper conventions. If your tool needs additional in- or outputs, feel freeto configure.
Click Next.

. Skip the page Tool Properties by clicking Next since it is not relevant for tools that match the
conventions of the old CPACS tool wrapper.

. Add alaunch setting for the tool by clicking the Add button on the Launch Settings page. Configure
the path of the CPACS tool and fill in a version, click OK. If you would like to allow users of
your tool to choose that the temp directory won’t be deleted at all after workflow execution, check
the property Never delete working directory(ies). Not to delete the working directory can be very
useful for users for debugging purposes, at least if they have access to the server’s file system.
But this option can result in disc space issues as the amount required grows continuously with
each workflow execution. It is recommended to check that option during integrating the tool and
uncheck it before publishing the tool.

Click Next.

. The CPACS Tool Properties are preconfigured to match the folder structure defined for the old
CPACS tool wrapper. In most cases you do not have to change this configuration. If you are using
XSLT mapping, please select the corresponding mapping files. If your tool does not work with
static tool specific input, please deselect this property.

Click Next.

10.In the Execution command(s) tab on the Execution page, you need to define your execution

1

command itself as well as optiona pre and post commands. Commands will be processed
sequentially line by line. An example for a typical Windows command including pre and post
commands will ook like the following:

rem pre- command
pre. bat

rem tool - execution
Your Tool . exe Tool | nput/tool | nput.xm Tool Qut put/t ool Qut put . xm

rem post - conmand
post . bat

1.Click Save and activate and your tool will appear immediately in the palette and is be ready to use.

12.If not aready done, do not forget to publish your tool (cf. Section 3.5, “Tool publishing and

authorization”) after testing it locally. To check if your tool is successfully published to the
RCE network open the tab Network View at the bottom and checkout Published Components after
expanding the entry of your RCE instance.

41

Usage

3.4.4.3. Integrate a CPACS Tool into a Server Instance in
Headless Mode

3.4.5.

The way to integrate a CPACS tool on a server running RCE in headless modeis as follows: Perform
the stepsto integrate a CPACStool on aclient instance and make sure that the path of the CPACStool
configured on the Launch Settings page (step 8) matches the absolute tool path on your server system.
Afterwards, you will find the configuration filesinside your rce profilefolder at the following location:

/integration/tool s/cpacs/[Your Tool Nane]

Copy the folder [Your Tool Nane] to the same location inside the profile folder running with
your headless server instance. Use the "auth” commands (cf. Section 3.5, “Tool publishing and
authorization”) to publish your tool. If the server instance is already running, your tool will be
available immediately after publishing.

Workflows as Components (Experimental)

In this section we describe how to integrate a workflow containing multiple components as a
component itself. Thisfeatureis currently experimental and not recommended for productive use.

Consider a disciplinary tool that computes the value of some function f_c(x) for some parameter ¢
and some input value x and assume that the user has aready integrated this tool as the component
Di scConp. Furthermore assume that in multiple workflows the user would like to fix some value for
¢ and find a minimum of f_c. She implements this use case via the structure shown in the following
figure.

Figure 3.8. Workflow for determining the optimal input for the function
f c(x).

}hfj. ! = {I{.,

Optirnizer

o B

e

DiscComp

In that workflow, the user opted to provide the parameter ¢ via an input provider, while she used an
optimizer to determine the optimal value of x. That optimal value isthen written viaan output writer.
The user now wants to use this workflow as part of other, more complex workflows.

One approach would be to simply copy the part of the workflow that implements the actual
computation (i.e., the components Opt i mi zer and Di scConp) and paste it whenever she requires
this functionality in other workflow. This approach, however, is neither scalable nor maintainable:
While this example requires only copying of two componentes, one can easily imagine situations in
which the functionality to be copied isimplemented via dozens of components, which leads to severe
cluttering of the workflows in which the functionality is used. Furthermore, if the user changes the
original workflow, e.g., if she uses another algorithm for the optimization, she would have to re-copy
the changed parts to all workflows that use the original parts.

42

Usage

Instead of manually copying and pasting, the user may instead opt to integrate the workflow shown
in the above figure as atool to be used in other workflows. This allows her to hide the details of the
implementation (i.e., the use of an optimizer and of Di scConp) from users of her component and
to easily update that implementation.

In thefollowing, wefirst show how to integrate an existing workflow as a component before detailing
the technical backgrounds of executing aworkflow as a component. Finally, we discuss caveats and
common questions about thisfeature. In al these sections, wewill refer to an "inner" workflow and an
"outer" workflow. These refer to the workflow that is integrated as a component and to the workflow
in which that component is used later on, respectively.

3.4.5.1. Integrating a Workflow

Before integrating the workflow shown above, we assume that you have already constructed a
workflow that implements the behavior that you want to provide to other users as a component.
Moreover, we assume that this workflow contains some input providers that feed initial datainto the
workflow and some output writers that persist the results of the computation implemented by the
workflow. In the figure above, these input providers and output writers are situated to the left of the
component Di scConp and to the right of the optimizer, respectively. Finaly, the workflow to be
integrated must not contain any placeholders (cf. Section 3.3.3.1, “ Configuration Placeholder Value
Files’). Otherwise user input would be required at execution time in order to assign values, which
would prevent automated execution of the integrated workflow.

Note

Y ou can easily determine whether your workflow contains placehol ders by opening the workflow execution wizard
(either via the green arrow in the upper bar in the GUI or via the shortcut Ctrl + Shift + X). If there exist any
placeholders that are to be assigned values before the start of the execution, the wizard will show a second page
that displaysall such placeholders. If no such page exists, the workflow does not contain placeholders and is ready
for integration as a component.

Integrating a workflow consists of nothing more than determining endpoints of components in the
inner workflow that will be exposed to the outer workflow by the resulting component. In this case,
we opt to expose the input ¢ of Di scConp as well as the output x_out put of Opti ni zer. In
genera, inputs will be exposed as inputs on the component in the outer workflow, while outputs will
be exposed as outputs. It is nhot possible to expose an input of a component in the inner workflow as
an output to the outer workflow, or vice versa.

In order to integrate the above workflow as a component, we first remove the input providers and
output collectors that handle the inputs and outputs that are to be passed into the inner workflow by
the outer workflow. In the example above, we simply deactivate the two components (e.g. via the
keyboard shortcut Ctrl + D) and obtain the workflow shown in the following figure.

43

Usage

Figure 3.9. Workflow from the above figure prepared for integration asa
component.

:"r/:l. ! - ‘&

Optirmizer

X

o B

DiscComp

While previoudly, all endpoints of all components were connected, now there exist two unconnected
endpoints: The input ¢ of Di scConp as well as the output x_opti mal of Optim zer. The
workflow is now ready for integration as a component.

Integration of workflows is performed via the command console and, in particular, via the command
wf i nt egr at e. Thiscommand has the following general form:

‘wf integrate [-v] <conponent name> <absolute path to .wf file> [<exposed endpoint definition>. ..] ‘

Theoptional argument - v enablesverbose mode. If thisparameter isset, thecommand outputsdetailed
information about the endpoints that are exposed to the calling workflows. This does not change the
behavior of the command.

The parameter conponent nane determines the name of the component that is integrated, i.e.,
the name that will appear in the pallet and in the workflow editor. Since in our example the purpose
of the new component in our example is to determine some optimal parameter x, we opt to call the
component Fi ndOpt i mal X.

The parameter absol ute path to .wf fil e issef-explanatory and denotes the path on your
local file system where the workflow file describing the workflow to be integrated is located. In our
example we assume that the workflow fileislocated at / hone/ user / wor kf | ow. wf .

Note

Recall that you can obtain the absolute path to any workflow file in the project explorer via aright click on the
workflow and selecting Copy Full Path.

Furthermore, recall that parameters in the command console are separated by spaces unless the parameter is
surrounded by quotation marks. Hence, if the path to your workflow contains spaces, encloseit in quotation marks.
Finally, recall that backslashes must be escaped, i.e., the path C: \ My Fol der would haveto be entered as" C:
\\My Fol der".

Each succeeding parameter isinterpreted asthe definition of an exposed endpoint. Each such definition
is of the following form:

‘- - expose <conponent name>:<i nternal endpoint nane>: <exposed endpoi nt nanme> ‘

Here, conponent name refersto the name of the component in the inner workflow whose endpoint
isto be exposed. The parameter i nt er nal endpoi nt nane denotesthe name of the endpoint of
the component that is to be exposed, while the parameter exposed endpoi nt nane determines
the name of the endpoint on the resulting component. Make sure that each exposed endpoi nt
nane is unique within the context of the resulting component, as the behavior of a component with
multiple inputs or outputs of the same name is undefined.

44

Usage

Note

Instead of the names of the component and the endpointsthat are displayed in the workflow editor, you may instead
use the internal identifiers of these nodes and endpoints, respectively. These are not currently shown in the GUI
of RCE but can, e.g., be determined by inspecting the workflow file via some text editor. While this should not be
necessary when integrating workflows manually, it may prove useful when automating the creation and integration
of workflows.

Recall that you do not need to specify whether the endpoint is exposed as an input or as an output, but
that the underlying endpoint determines the configuration of the endpoint on the resulting component:
Inputsareonly ever exposed asinputs, whereas outputsare only ever exposed asoutputs. Thisprinciple
extends to the configuration of inputs: If the endpoint on the component in the inner workflow is, e.g.,
configured be required for component execution and to only expect aconstant val ue, then the endpoint
on the resulting component is configured analogously.

Furthermore recall that we want to expose theinput ¢ of Di scConp aswell asthe output X _out put
of Opti m zer . We want the former input to retain its original name, while we want to expose the
latterinput asopt i mal X. Inorder to integrate the example workflow prepared above asacomponent,
we thus issue the following command:

wf integrate FindOptimal X "/hone/user/workflow. wf" --expose Di scConp:c:c --expose
Optim zer: x_optinmal : opti mal X

When enabling verbose mode via the switch - v, RCE writes the following output

I nput Adapter : c --[Float, Constant, Required]-> ¢ @ 03b5b758- 3b44-4a53- b832- be9991321285
Qut put Adapter: x_optimal @ 402cacb5e-2206-48cc-a62f-803bd320al5a --[Float]-> x_opt

where 03b5b758- 3b44- 4a53- b832- be9991321285 and 402cac5e-2206- 48cc-
a62f - 803bd320al5a denote the IDs of the component Di scConp and of Optim zer,
respectively.

Once the execution of the command has finished, a new component named Fi ndOpt i mal X with
asingle input named ¢ and a single output named opt i mal X will be available for use in all other
workflows.

3.4.5.2. Executing an Integrated Workflow

Recall that each workflow that RCE executes is controlled by some particular instance, i.e., by the
workflow controller. Since executing an integrated workflow executes the underlying workflow, RCE
requires a workflow controller for doing so. That workflow controller may or may not be the same
as the one executing the outer workflow. Currently, the instance executing the component serves as
the workflow controller for the execution of the inner workflow. That instance will execute a copy
of the workflow that has been created when the workflow was integrated, i.e., changes made to the
workflow after integration will have no effect on the behavior of the integrated component.

Futhermore, since the publishing instance serves as workflow controller for the execution of the
integrated workflow, the execution of the integrated workflow will show up in the datamanagement
of the publishing instance under the name <conponent nane> runni ng as comnmponent

'<node name>' of workflow '<outer workflow>', where<conponent name>
denotes the name as which the publishing instance published the component, <node name> denotes
the name under which the component is used in the outer workflow, and <out er wor kf | ow>
denotes the name under which the calling workflow is stored in the data management of its workflow
controller.

Note

Nesting workflows, i.e., integrating workflows as components that already contain workflows integrated as
components, can easily lead to unreadable names of workflow executions that are stored in the data management.
Thismay significantly inhibit manual inspection of theresulting data. Keep thisin mind when designing workflows.

Technically, before starting the integrated workflow, the workflow controller injects two additional
components into the workflow, one so-called input adapter and one so-called output adapter.These

45

Usage

components are not accessi ble by the user when constructing workflows and are only used in transport
data from the inputs to the component on the side of the calling workflow to the exposed inputs as
well as data from the exposed outputs of the workflow to the outputs of the component in the calling
workflow, respectively.

Upon execution of the integrated component in the caling workflow, the instance publishing the
component first injects the input and the output adapter as described above. It subsequently executes
the workflow and collects the results via the output adapter. The execution takes place as if the
workflow were executed using the command wf r un.

3.4.5.3. Limitations, Caveats, and FAQ

Since the integration of workflows as components is currently under development and only released
as a beta feature, there are some caveats and known issues that you should be aware of. We have
alluded to these limitations and caveats throughout this section, but briefly list them here again for
the sake of readability.

» Workflow files are "frozen" at integration time. Changes to an integrated workflow file after
integration do not change the behavior of the component. If you want to apply changes to the
workflow file to the component, you will have to re-integrate the workflow.

 Currently, no placeholder files (cf. Section 3.3.3.1, “Configuration Placeholder Value Files’) are
supported, i.e., the integrated workflow must contain no placeholders. Moreover, the workflow is
not checked for containing placeholders at integration time, but instead the execution of the the
component will fail at execution time.

» Theuser cannot specify aversion of the integrated component. If there is demand, we will add the
command line switch - - ver si on in order to allow the user to have multiple versions of the same
workflow integrated simultaneously. Also, the user can currently not specify an individual icon to
be used for the integrated component. This may also be added in future versions.

* |f some adapted output is written to multiple times during a single run of the integrated workflow,
only the final values written to that output are forwarded to the calling workflow.

e Due to this new implementation, there is doubled functionality between the command wf
i nt egr at e andthecommandr a- adm n wf - publ i sh. After thefull release of theintegration
of workflows as component, the latter command will be deprecated and its output replaced by a
message asking the user to usewf i nt egr at e instead.

* If the underlying workflow is paused during execution, this pause state is not reflected in the
calling workflow. Instead the component is shown asrunning. Similarly, if theintegrated workflow
includes some result verification and the results are rejected, the component simply fails instead of
indicating the rejection of results.

» Component names passed to thecommand wf i nt egr at e are not checked to satisfy the ruleson
component names. Thiswill be fixed before release and integration of acomponent with an invalid
name will be refused with an informative error message.

Furthermore, there are some common questionsthat may occur in the context of integrating aworkflow
as a component. We collect and answer these questions here again for the sake of readability.

Where is the integration folder of The integration of a workflow as a component is stored
my new component? in a profile in the folder i nt egr ati on/ conponent s/
wor kf | ows.

Can | move the folder containing Y es, thisispossible, sincetheintegration folder containsacopy

the integration of aworkflow to of the workflow file which was produced at integration time.
other instances, similarly to the Also, you can publish integrated workflows to other instances
integration of common tools? just as you can publish common tools.

46

Usage

What happensiif an integrated In that case the component is still available as long as the

workflow uses some remote instance publishing it is available. The availability of the

components that are not available? components contained in the integrated workflow is only
checked at execution time. If acomponent isunavailable at that
time, the execution of the component fails.

3.5. Tool publishing and authorization

3.5.1.

RCE components and integrated tools can be published to make them usable by other connected
("remote") RCE instances. The publishing options for each component/tool can be defined in the
"Component Publishing" view. In this view, each component can be assigned to one of three basic
publication levels:

e Loca (the default option): Components with the "local" setting can only be used on the local
instance; they are not visible to other instances.

» Custom: This setting allows to make the component/tool available only to specific groups of users.
To use this setting, one or more authorization groups have to be created first, which is explained
in the next section. Each component/tool can then be assigned to one or multiple groups. Users on
remote instances can see and use components if they are members of at least one of these groups.

 Public: Components with the "public" setting can be used by all connected RCE instances. Thisis
equivalent to the tool and component publishing in earlier versions of RCE. Tools in the "public”
group are also available over Uplink Connections and Remote A ccess connections.

Note

If the "Component Publishing" view is not visible, you can open it from the "Window > Show View" menu. If it
isnot listed there, choose "Other" and select them from the "RCE" category.

Managing authorization groups

Authorization groups can be created and managed in the "Authorization Groups' dialog, which can
be opened from the "Component Publishing" view. To create a new group, click the "Create Group"-
button and enter a name for the group. To provide access to this group to other users, select the group
in the list and click "Export Group Key". Copy the provided key from the dialog that appears, and
passit on to the users that you would like to invite to this group.

Note

IMPORTANT: This exported group key is similar to a password. When passing it to other users, make sure to
use acommunication medium that unauthorized users cannot easily intercept. For example, passing the key viaan
encrypted chat system provided by your employer, or a Team Site that is only accessible to project members, is
usually secure enough. On the other hand, sharing it by email outside of your organization is usualy unsafe, and
we recommend using more secure alternatives.

When the other user receivesthiskey, they can import it into their RCE instance by using the "Import
Group Key" button in their " Authorization Groups" dialog. After importing akey on an RCE instance,
all toolspublished for that group on connected RCE instances are visible and can be used likea " public”
component.

47

Usage

Note

To provide access to tools over Uplink Connections, the tools either have to be "public" or in an authorization
group which name startswith "external _". Toolsin other authorization groups are only accessible from the internal
RCE network.

3.5.2. Publishing tools on the command console

Creating custom tool groups and publishing tools is also possible using the "auth" commands on the
command line. A short reference:

e auth create <nane> - creates an authorization group
e auth |i st -listsavailable access groups

 auth del ete <name/id> - deletes an authorization group; if the name is ambiguous (e.g.
there are two groups named "groupName"), you need to add the randomly generated id behind it,
separated with acolon (e.g. gr oupNane: 2716ab2d25)

 auth export <nane/id> - exportsagroup key in aform that can be imported by another
instance via GUI or command line

e auth i nport <exported key>-importsagroup key exported viaGUI (as described above)
or viatheaut h export command. The group name is embedded in the exported key, and is
set automatically.

e conponents set-auth <component id> <perm ssions> - setsthe permissions
for a component. Possible values for "permissions’ are either "I ocal ", "publ i ¢", or acomma-
separated list of authorization groups/ids.

» conponents |i st-auth -showsalist of al defined authorization settings. These settings are
independent of whether a matching component exists, which means that settings are kept when a
component is removed and later added again.

The component ids used in this commands can be derived as follows:
» rce/ <conponent nane> for standard RCE components, e.q. "r ce/ Paramet ri ¢ St udy”
» common/ <t ool nane> for integrated tools of type "common” e.g. "conmon/ Exanpl eTool "

e cpacs/ <t ool nanme> for integrated tools of type "CPACS' eg. "cpacs/
CPACSExanpl eTool "

3.6. Connecting RCE instances

Since RCE 10, RCE provides three possibilities to connect your RCE instance to other RCE instances
and to use the user-integrated tools and components published on those instances. The RCE network
connections, SSH Uplink connections and SSH Remote Access connections. RCE connections are
meant to be used only in atrusted network (e.g. your institution'sinternal network). The RCE network
traffic is currently not encrypted . This means that it is not secure to expose RCE server ports to
untrusted networks like the internet. In the case that it is not possible or not secure to use RCE
connections, SSH connections provide a more secure alternative.

As the new Uplink connections do not yet support all features of the former SSH connections (the
publishing of workflows is not possible by Uplink connections), we decided to keep both types of
connections in the current release. Thus, in the network view there are now 3 types of connections:

48

Usage

3.6.1.

the standard RCE connections (meant to be used in secure internal networks), the old "SSH Remote
Access Connections' and the new "Uplink Connections'.

The following table compares the three connection types:

Table 3.13. Connection types - feature matrix

Connection type RCE connections|SSH Remote| SSH Uplink
("internal Access connections
network™) connections

Publishing built-in tools (e.g. Joiner,|yes no no

Parametric Study, ...)

Publishing user-integrated tools yes yes yes

Publishing workflows as tools no* yes no*

Symmetric/bidirectional tool |yes no yes

publishing

Accessing remote workflow status and |yes no no

data management

Remote system monitoring (CPU/|yes yes no**

RAM)

Login authorization (via password or|{no yes yes

SSH keyfile)

Suitable for insecure networks (e.g.|no (!) partially *** yes (viarelay)

internet)

* = planned for RCE 11; ** = may be added in a future release; *** = connections are encrypted,
but require an open incoming network port for publishing tools - if possible, use Uplink connections
instead

RCE Network Connections

RCE connections are meant to be used only in a trusted network (e.g. your institution's internal
network). To build up anetwork of RCE instances, at |east one of the instances hasto be configured as
aserver (seethe "Configuration™" section or the sample configuration file "Relay server” for details).

On the client side, RCE network connections can be added in the "network" view by clicking "Add
network connection" and entering the hostname and port of an RCE server instance. The connections
are shown in the "RCE Network"->"Connections" subtree. They can also be edited, connected and
disconnected in the network view. However, the changes made here are not saved in the configuration
yet, i.e. they will be lost when RCE is closed or restarted. To permanently add connections, you can
edit the configuration file (see the "Configuration" section for details).

In the "RCE Network" -> "Instances’ subtree al RCE instances in the network are listed. When
expanding the entry for an instance, you can see monitoring data like CPU or RAM usage for this
instance, and the published components and tools of thisinstance (if it has any).

The published components and tools of the other instances in your network are also shown in the
palette of the Workflow Editor. From there, you can use them in your workflows just like your local
components and tools. When you start a workflow, in the "Execute Workflow" wizard there is an
overview which component will be run on which RCE instance. If acomponent isavailable on several
instances, you can choose here on which instance it should be run. In the same wizard, you can also
choose another instance asthe " Controller Target Instance”, which means that the workflow execution
will be controlled by thisinstance (see the section "Configuration Parameters' for more information).
This can be useful when you start along-running workflow where all components are run on remote
instances and you do not want to keep your local computer connected all the time.

49

Usage

3.6.2. Uplink Connections

Uplink connections allow to use the "SSH relay" functionality. This means that it is possible to setup
a single server as the "relay" for a project (and only this server needs to be reachable on an SSH
port). All other RCE instances can connect to this server as clients via SSH Uplink Connections and
publish their tools so that they can be used by other clients. (In contrast, with the former version of
SSH connections every partner who wanted to publish tools needed to configure an SSH server).

3.6.2.1. Configuring an RCE instance as an Uplink relay

The RCE instance that should be used as the relay has to be configured as an SSH server and
provide at least one account with the role "uplink_client" or "remote_access user"(see Section 2.2,
“Configuration” or the sample configuration file "Uplink relay" for details). The recommended role
is "uplink_client", which allows only access to Uplink connections and no access to an interactive
SSH shell.

Note

When configuring an SSH account using a key file, both server and client have to run RCE 7.1 or newer. In RCE
10.0.0, only RSA Keysgenerated by thetool put t ygen using Windows-style line endings work. Thisisaknown
issue with RCE 10.0.0 and will be fixed in an upcoming version of RCE.

When using Windows, the default settings of put t ygen, which comes bundled together with the popular SSH
client put t y, are sufficient. When using Linux, you will have to install the tool put t ygen. Please refer to the
documentation of your system for instructions on installing that tool. After you have generated a key on Linux,
you will have to convert it to use Windows-style line endings. We recommend the tool t odos for thistask. Both
putt ygen andt odos arereadily available for most major distributions from the official package sources.

3.6.2.2. Configuring an RCE instance as an Uplink client or
gateway (in GUI mode)

On the client side, Uplink connections can be added in the "network" view by clicking "Add Uplink
Connection". Inthefollowing dial og, enter the hostname and port of an Uplink relay aswell asthe user
name and the authentication data of an SSH account configured on this instance. Depending on the
SSH account, you have to authenticate using apassphrase or by an RSA privatekey file. If your private
key is protected by a passphrase, select the authentication type "Keyfile with passphrase protection”,
else select "Keyfile without passphrase protection”. If several clients are using the same account on
arelay, enter adifferent "client ID" on each of them.

If the instance should serve as a gateway (i.e. forward tools between the (external) Uplink network
and alocal network), set the "isGateway" parameter to "true".

The connections are shown in the "Uplink"->"Uplink Connections' subtree. They can also be edited,
connected and disconnected in the "network" view. It is possibleto store passphrases using the Eclipse
Secure Storage Mechanism. However, the changes made here are not saved in the configuration yet,
i.e. they will belost when RCE isclosed or restarted. To permanently add Uplink connections, you can
edit the configuration file (see Section 2.2, “Configuration” for details). Sample configuration files
areavaible as"Uplink Client" and "Uplink Gateway".

3.6.2.3. Configuring an Uplink Gateway in non-GUIl mode
Configuring a gateway in non-GUI mode involves four steps:
e Configure an SSH Uplink connection to the SSH relay server in the profile's

confi guration. json file. In this connection, make sure to set the"i sGat eway" parameter
to"t rue" (without quotes).

50

Usage

 Configure anormal RCE server port for the internal network. This is the network port that clients
inthelocal (internal) network can connect to with standard ("internal network™) connections.

 Usingthefile-based import feature (see section Section 2.2.4, “ Importing authorization datawithout
GUI access”), import the SSH password or the SSH keyfile passphrase for logging into the Uplink
relay. (Please note that currently, the gateway must be (re)started after creating these import files
to apply the changes.)

* To alow the gateway to forward tools that are not public, but only published for specific
authorization groups, the gateway must be a member of at least one matching group. Use the file-
based import feature (see section Section 2.2.4, “Importing authorization datawithout GUI access’)
to import any required group keys. (Please note that currently, the gateway must be (re)started after
creating these import files to apply the changes.)

3.6.2.4. Tool publishing

In order to make tools available for other clients, you have to publish them (for example using the
"Component Publishing” view; see user guide for more information about pubishing/authorization
groups). To make a tool available viaan SSH relay, it has to be either in the "Public Access" group
or in an authorization group which name starts with "external_". Tools in other authorization groups
will only be shared in your local RCE network.

Note

Note: Toolsthat are availableto aclient viaan Uplink connection are also available to RCE instances connected to
that clientinitslocal RCE network (if they possess the corresponding authorization group key and the "isGateway"
option is set for the Uplink connection). Accordingly, tools published by those instances in the "Public Access"
group or in an authorization group which name starts with "external_" will also be made available via the Uplink
relay. Please not that this only worksif the gateway itself also possesses the authorization group key.

3.6.2.5. Possibly surprising behavior (or non-behavior)

Nodes connected via Uplink connections do not show up in the network view as nodes (same as
Remote Access).

Imported tools show up in the Network view under the Node running the Uplink connection (also the
same as Remote Access), and they are not yet marked or distinguishable from normal components.

Tools located on the RCE instance serving as relay are not published automatically. If you want to
publish them, you have to add a connection to the relay from the same instance.

3.6.2.6. Known issues/limitations of the current release

3.6.3.

Uplink connections are an experimental feature in RCE 10.x and have some known limitations:

» Connectionsare awaysencrypted as part of the SSH connection, but thereisno additional "internal"
encryption of tool input/output datayet (whichis planned for future versionsto protect users against
untrustworthy relay servers).

» The behavior on errors, disconnects, and server shutdowns is not fully implemented yet; this will
be stahilized in RCE 11.

» Custom tool icons are not yet transferred over Uplink connections.

Example of a Cross-Organization Network

Thefollowing figure gives an exampl e of how across-organi zation network using Uplink connections
could be structured:

51

Usage

Figure 3.10. Example RCE network

Partner B

Computer/Server running
an RCE instance

blink Server running an RCE instance
y configured as Uplink Relay server
RCE instance configured as uplink
client with the ,isGateway”
ad option
—

Published tool

Standard RCE connection

SSH Uplink connection

The four project partners in the example al have an internal network of RCE instances which are
connected by standard RCE connections. Uplink connections to a relay server are used to connect
between the different partners. The relay server islocated outside of the organizations networks, and
only the relay server has to be reachable via SSH over the internet. Typicaly, for each organization
one RCE instance (called SSH gateway) established an SSH connectionsto thisrelay server. All other
instancesin theingtitution’ sinternal network can be connected to it by standard RCE connections and
till publish tools to the other partners/ access tools published by other partners.

Each institution in the example has a different internal setup, al of which are possible:

 Partner A has a dedicated RCE server where the published tools are located, which is connected to
the SSH gateway by an RCE connection. All other RCE usersin theinternal network are connected
to this server.

* Partner B has put all the tools directly on the SSH gateway instance.

* InPartner C'snetwork, sometoolsarelocated on the SSH gateway, but sometoolsare a so published
by users directly on their own machines. As long as they are connected to the SSH gateway also

those tools can be published to the other partners.

 Partner D has no tool server, instead the users' computers connect directly to the relay server.

3.6.4. SSH Remote Access Connections

Note

Since RCE 10, the recommended connection type for secure connections are the SSH Uplink connections (cf.
previous chapters). However, as the new Uplink connections do not yet support al features of the SSH Remote
Access Connections (the publishing of workflows and the access to monitoring data is not possible by Uplink

52

Usage

connections), the current release provides both types of connections. This chapter describe the usage of the SSH
Remote Access Connections.

SSH connections provide a more secure alternative to the standard RCE connections and can be used
to access tools remotely. The published tools are shown in the palette of the client's Workflow Editor
(this may take afew seconds after connecting, as the toal list is fetched from the remote hosts every
few seconds). From there, you can use them in your workflows just like your local components and
tools. Differently from tools accessed by RCE network connections, in this case the component is
shown to be executed on your local instance in the Workflow Execution wizard.

Also workflows that were published on the remote instance (for information about the publishing see
section "Remote Tool and Workflow Access') are shown as components in the pal ette of the client's
Workflow Editor in the group "SSH Remote Access Workflows® (if the client runsRCE 7.1 or newer).
These remote workflows can be added to workflows and executed like local components/tools.

3.6.4.1. Configuring an RCE instance as an SSH server

The RCE instance that publishes the tool, or another instance connected to it by RCE network
connections, has to be configured as an RCE remote access server (see the "Configuration” section or
the sample configuration file "Remote access server” for details).

Note

When configuring an SSH account using a key file, both server and client have to run RCE 7.1 or newer. In RCE
10.0.0, only RSA Keys generated by thetool put t ygen using Windows-style line endings work. Thisisaknown
issue with RCE 10.0.0 and will be fixed in an upcoming version of RCE.

When using Windows, the default settings of put t ygen, which comes bundled together with the popular SSH
client put t y, are sufficient. When using Linux, you will have to install the tool put t ygen. Please refer to the
documentation of your system for instructions on installing that tool. After you have generated a key on Linux,
you will have to convert it to use Windows-style line endings. We recommend the tool t odos for thistask. Both
putt ygen andt odos arereadily available for most major distributions from the official package sources.

3.6.4.2. Configuring an RCE instance as an SSH client

On the client side, SSH connections can be added in the "network™ view by clicking "Add SSH
Remote Access Connection”. In the following dialog, enter the hosthame and port of an RCE
instance that provides an SSH server as well as the user name and the authentication data of an SSH
account configured on this instance. Depending on the SSH account, you have to authenticate using
a passphrase or by an RSA private key file. If your private key is protected by a passphrase, select
the authentication type "Keyfile with passphrase protection™, else select "Keyfile without passphrase
protection™.

The connections are shown in the "SSH Remote Access'->"SSH Remote Access Connections'
subtree. They can aso be edited, connected and disconnected in the "network" view. It is possible to
store passphrases using the Eclipse Secure Storage Mechanism. However, the changes made here are
not saved inthe configuration yet, i.e. they will belost when RCE is closed or restarted. To permanently
add SSH connections, you can edit the configuration file (see the "Configuration™ section for details).

3.7. Remote Workflow Access

RCE provides the possibility to publish complete workflows which can then be accessed and run via
Remote Access Connections from other RCE instances.

This section describes how to publish workflows such that they can be used via Remote Access. It will
guideyou through the creation of asimple example, which you can expand to build your own solutions.

53

Usage

3.7.1. Setting up the Workflow Execution Example/
Template

These steps will guide you through the creation of a remote-executable workflow, and will show you
how to invoke it using the provided example scripts.

» Configureyour RCE instance as an SSH Remote Access Server asdescribed in Section 3.6.4, “ SSH
Remote Access Connections’.

» Asafirst example we are going to execute the umodified "Remote_Workflow_Access Template"
workflow file in the Workflow Examples Project. If you haven't created this project aready, right-
click inthe Project Explorer on the left side, and choose "New > Workflow Examples Project”, and
choose aname for it. The template file is contained within the project folder. To get an impression
of the basic setup, open the template workflow file. Y ou will see an SCP Input Loader on the left
side with two outputs. On theright side, there is an SCP Output Collector with one input (these two
are helper componentsthat are only used for remote access workflows). These are the points where
the Remote Workflow Access feature sends the provided inputs into your workflow, and collects
the final outputs.

» Asasecurity measure, you need to explicitly publish your workflow to allow remote access to it.
Thisis done viaa console command at thistime; future RCE versionswill most likely add a option
to do this from the GUI. To issue this command, open the "Command Console" view (if it is not
already visible) by selecting "Windows > Show View > Other" from the menu, and then double-
clicking "Command Consol€e" in the "RCE" section.

 Right-click your workflow filein the "Project Explorer" and select the " Copy full path” entry inthe
popup menu to copy the full path to the workflow file to the clipboard.

Note

This step demonstrates how the get the path of a workflow file in the current workspace, but you can use
workflow files that are located anywhere on your system.

» Tomaketheworkflow availablefor remote execution, enter thecommandr a- admi n publ i sh-
wf "<workflowfile>" <i d>inthecommandwindow. PressCtrl-V inplaceof <wor kf | ow
file> to insert the path to your workflow file there. For <i d>, choose a string (without
whitespace) that callers can use to execute the workflow. Press "enter" to execute the command.
The workflow file will be inspected, and you will either see a message describing what is missing,
or a message that the workflow was successfully published. Fix any errors until the workflow is
published.

Note

Starting with RCE 6.2.0, published workflows are persistent by default, so they will still be available after the
local RCE instanceisrestarted. Usether a- admi n unpubl i sh-wf <i d>command to remove apublished
workflow from remote access.

To publishaworkflow for the current RCE instance'slife-timeonly, usethe- t option:r a- admi n publ i sh-
w -t "<workflow file>" <id>.

* If some of the workflow's components use placeholders for configuration values, you can use the
- p option to specify aplaceholder valuesfile. The structure of placeholder valuefilesis explained
in Section 3.3.3.1, “Configuration Placeholder Value Files’. Placeholder files can used with both
persistent and non-persistent workflows (see above).

Example: ra-admin publ i sh-wf -p myPl acehol der Val ues. j son
myWor kf | owFi | e. wf nmyPubl i shld

* You now have aworkflow file that can be executed using the "Remote Access' feature.

54

Usage

 Configure another RCE instance an SSH Remote Access Client as described in Section 3.6.4, “ SSH
Remote Access Connections’ and connect it to the instance publishing the workflow The workflow
will now be shown as acomponent in the pal ette of the client instance and can be used in workflows
like any another component.

* To get an impression of how this feature interacts with existing RCE features, you can examine
several areas within the RCE instance.

* Open the "Workflow List" view in RCE and watch it while the "run-wf" script is executing.
After ashort preparation time where the input datais uploaded, you will see the workflow being
executed. It will disappear automatically if it finishes successfully; if it fails, it will remain in the
list for review. Y ou can aso double-click on arunning or workflow to monitor its execution.

« Open the "Workflow Console" view; if the tool produced any output, it should be visible there.

¢ Openthe"Workflow DataBrowser" and refresh it; there should be an entry for the Remote Access
workflow. When you expand this entry, you should see the uploaded content of the input folder,
the generated output folder, any generated text output (in the "Execution Log" folder), and the
exit code of the tool process (also in the "Execution Log" folder).

3.7.2. Building Your Own Remote Access Workflow

After running the example/template workflow as described in the previous section, you can proceed
to building your own actual workflow.

As described above, open the "Remote Workflow_Access Template" workflow file. You will seean
SCP Input L oader on the left side with two outputs. On theright side, thereisan SCP Output Collector
with one input (these two are helper components that are only used for remote access workflows).
These are the points where the Remote Workflow Access feature sends the provided inputs into your
workflow, and collects the final outputs. Y ou can change the data types or add/del ete inputs/outputs
in the properties view of the input loader/output collector. The Script component in the middle isjust
aplaceholder - unless you need a Script component anyway, you can just delete it.

There are two basic approaches to building your workflow:

« Either you start with an SCP Input Loader and an SCP Output Collector (either drag them into
the workflow from the Palette, or modify the template), and build your workflow between the two
standard components. Thisisstraight-forward, but meansthat you cannot test run theworkflow from
the RCE GUI (asthe Input Loader will fail), but have to use the Remote Access feature to test it.

» The other approach is to build your workflow normally, where you add an Input Provider and
Output Writer with the outputs and inputs you need. You can then test (and if needed, modify)
your workflow from the GUI until it behaves as it should. Then, mark al components except the
Input Provider and Output writer in your workflow, and select "Copy" from the right-click menu.
Switch to thetemplatefile, click an empty area, and select "Paste" from the right-click menu. Then,
connect the two template components (SCP Input Loader and SCP Output Collector) as in your
origina workflow.

Note

(Advanced Usage) You can aso build your workflow in the template file, add your own Input Provider and
Output Writer, and use the new "Enable/Disable Component" feature to toggle between them for testing and
Remote Access usage. As this reguires some helper components to work, thisis not recommended for your first
example, but may be a useful trick to keep in mind.

After you have finished building your workflow, the process of publishing and executing it is the
same as described above for the unmodified template file. Please note that publishing your workflow
for remote execution automatically creates an (invisible) copy of it. Modifications you make to your
workflow file are not published right away. Once you have made the changes you want to publish, run
the same "ra-admin publish-wf" command again to update the published version.

55

Usage

Note

Tip: To repeat a previous command, presse the "up arrow" key in the Command Console window.

56

Appendix A. Script APl Reference

This section contains a reference for the API that is accessible viathe script component.

Method Description

def RCE.close_all _outputs () Closes all outputs that are known in RCE

def RCE. cl ose_out put (nane) Closes the RCE output with the given name

def RCE.fail (reason) Fails the RCE component with the given reason

def RCE. get_execution_count () Returns the current execution count of the RCE
component

def Returns all input names that have got a data value

RCE. get _i nput _nanes_wi t h_dat um

()

from RCE

def RCE. get _output_names () Returns the read names of all outputs from RCE

def RCE.get _state dict () Returns the current state dictionary

def RCE.getallinputs () Gets adictionary with all inputs from RCE

def RCE.read_i nput (nane) Getsthevaluefor thegiveninput nameor an error,
if theinput is not there (e.g. not required and it got
no value)

def RCE. r ead_i nput |Getsthe valuefor the given input name or returns

(nane, def aul t val ue)

thedefault valueif thereisno input connected and
the input not required

def RCE. read_st at e_vari abl e |Reads the given state variables value, if it exists,
(nane) else Noneisreturned
def RCE. read_st at e_vari abl e |Reads the given state variables value, if it exists,

(nane, def aul t val ue)

else the default value is returned and stored in the
dictionary

def RCE.wite_not_a_ val ue_out put
(name)

Sets the given output to "not avalue" data type

def RCE.wite_output (name, val ue)

Sets the given value to the output "name" which
will be read from RCE

def RCE.wite state variable
(nane, val ue)

Writes avariable name in the dictionary for the
components state

def RCE.create_input file ()

Creates and returns a file from the input file
factory

Syntax: file = RCE.create_input_file ()

def add_vari abl e (nane, val ue)

Addsthe variable declaration of name (i.e. name
=value) to theinput file

Syntax: file.add_variable(name, value)

def add_comment (val ue)

Adds a comment (i.e. # value) to the given file

Syntax: file.add_comment(value)

def add_dictionary (nane)

Defines an empty Python dictionary with the
given name (i.e. name = {}) and adds it to the
input file. Note: The datatype of name hasto be
String.

Syntax: file.add_dictionary(name)

57

Script APl Reference

Method

Description

def add_val ue_to_dictionary

(dic, key, val ue)

Writes a (key,value) pair (i.e. dic[key] = value)
tothedictionary dic into theinput file. Note: An
empty dictionary with the given name dic hasto
be defined beforehand.

Syntax: file.add value to dictionary(dic, key,
value)

def wite_ to file (filenane)

Writes a previoudly created input file to the
temp, working or tool dir, depending on the user
configurations, and returnsthe pathto thefile. The
name of the written file is the given filename .
The component will fail with an error, if afile
with the given filename already exists. Note:
The data type of filename has to be String.
An input file must first be created using the
RCE.create input_file () method.

Syntax: filepath = filewrite_to_file(filename)

def wite to file

(filenane, overwiteFile)

Writes a previously created input file to the
temp, working or tool dir, depending on the user
configurations, and returnsthe pathto thefile. The
name of the written file is the given filename .
Theboolean parameter overwriteFile isoptional.
If set to True, an existing file with the given
filename will be overwritten. The default valueis
False. Note: Thedatatype of filename hasto be
String. Aninput file must first be created using
the RCE.create input_file () method.

Syntax: filepath= filewrite_to_file(filename,
True)

58

